We extend the DeePMD neural network architecture to predict electronic structure properties necessary to perform non-adiabatic dynamics simulations. While learning the excited state energies and forces follows a straightforward extension of the DeePMD approach for ground-state energies and forces, how to learn the map between the non-adiabatic coupling vectors (NACV) and the local chemical environment descriptors of DeePMD is less trivial. Most implementations of machine-learning-based non-adiabatic dynamics inherently approximate the NACVs, with an underlying assumption that the energy-difference-scaled NACVs are conservative fields. We overcome this approximation, implementing the method recently introduced by Richardson [J. Chem. Phys. 158, 011102 (2023)], which learns the symmetric dyad of the energy-difference-scaled NACV. The efficiency and accuracy of our neural network architecture are demonstrated through the example of the methaniminium cation CH2NH2+.

1.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
2.
J.
Zeng
,
D.
Zhang
,
D.
Lu
,
P.
Mo
,
Z.
Li
,
Y.
Chen
,
M.
Rynik
,
L.
Huang
,
Z.
Li
,
S.
Shi
et al,
J. Chem. Phys.
159
,
054801
(
2023
).
3.
M.
Bertani
,
T.
Charpentier
,
F.
Faglioni
, and
A.
Pedone
,
J. Chem. Theory Comput.
20
,
1358
(
2024
).
4.
I.
Balyakin
,
M.
Vlasov
,
S.
Pershina
,
D.
Tsymbarenko
, and
A.
Rempel
,
Comput. Mater. Sci.
239
,
112979
(
2024
).
5.
R.
Zhang
,
S.
Xu
,
L.
Wang
,
C.
Wang
,
Y.
Zhou
,
Z.
,
W.
Li
,
D.
Xu
,
S.
Wang
, and
X.
Yang
,
Inorg. Chem.
63
,
6743
(
2024
).
6.
X.
He
,
J.
Liu
,
C.
Yang
, and
G.
Jiang
,
Comput. Mater. Sci.
223
,
112111
(
2023
).
7.
D.
Li
,
D.
Zhao
,
Y.
Huang
,
H.
Shen
, and
M.
Deng
,
Mol. Simul.
50
,
539
(
2024
).
8.
A. S.
Raman
and
A.
Selloni
, “
An ab-initio deep neural network potential for accurate large-scale simulations of the muscovite mica-water interface
,”
Mol. Phys.
(published online 2024).
9.
W.-K.
Chen
,
X.-Y.
Liu
,
W.-H.
Fang
,
P. O.
Dral
, and
G.
Cui
,
J. Phys. Chem. Lett.
9
,
6702
(
2018
).
10.
J.
Li
and
S. A.
Lopez
,
Chem. Phys. Rev.
4
,
031309
(
2023
).
11.
J.
Westermayr
and
P.
Marquetand
,
Chem. Rev.
121
,
9873
(
2021
).
12.
P. O.
Dral
and
M.
Barbatti
,
Nat. Rev. Chem
5
,
388
(
2021
).
13.
J.
Li
,
M.
Vacher
,
P. O.
Dral
, and
S. A.
Lopez
, in
Theoretical and Computational Photochemistry
, edited by
C.
García-Iriepa
and
M.
Marazzi
(
Elsevier
,
2023
), pp.
163
189
.
14.
D.
Hu
,
Y.
Xie
,
X.
Li
,
L.
Li
, and
Z.
Lan
,
J. Phys. Chem. Lett.
9
,
2725
(
2018
).
15.
P. O.
Dral
,
M.
Barbatti
, and
W.
Thiel
,
J. Phys. Chem. Lett.
9
,
5660
(
2018
).
16.
J.
Westermayr
,
M.
Gastegger
,
M. F.
Menger
,
S.
Mai
,
L.
González
, and
P.
Marquetand
,
Chem. Sci.
10
,
8100
(
2019
).
17.
J.
Westermayr
,
M.
Gastegger
, and
P.
Marquetand
,
J. Phys. Chem. Lett.
11
,
3828
(
2020
).
18.
L.
Zhang
,
S. V.
Pios
,
M.
Martyka
,
F.
Ge
,
Y.-F.
Hou
,
Y.
Chen
,
L.
Chen
,
J.
Jankowska
,
M.
Barbatti
, and
P. O.
Dral
,
J. Chem. Theory Comput.
20
,
5043
(
2024
).
19.
J.
Li
,
P.
Reiser
,
B. R.
Boswell
,
A.
Eberhard
,
N. Z.
Burns
,
P.
Friederich
, and
S. A.
Lopez
,
Chem. Sci.
12
,
5302
(
2021
).
20.
S.
Axelrod
,
E.
Shakhnovich
, and
R.
Gómez-Bombarelli
,
Nat. Commun.
13
,
3440
(
2022
).
21.
M. S.
Schuurman
and
A.
Stolow
,
Annu. Rev. Phys. Chem.
69
,
427
(
2018
).
22.
S.
Matsika
and
P.
Krause
,
Annu. Rev. Phys. Chem.
62
,
621
(
2011
).
23.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
24.
25.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
26.
J. F.
Stanton
,
Int. J. Quantum Chem.
39
,
19
(
1991
).
27.
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
107
,
7839
(
1997
).
28.
L. D.
Landau
, in
Collected Papers of L. D. Landau
, edited by
D.
Ter Haar
(
Pergamon
,
1965
), pp.
52
59
.
29.
C.
Zener
and
R. H.
Fowler
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
30.
X. R.
Ma
,
J.
Zhang
,
Y. C.
Xiong
, and
W.
Zhou
,
Mol. Phys.
120
,
e2051761
(
2022
).
31.
I.
Burghardt
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
111
,
2927
(
1999
).
32.
M.
Ben-Nun
and
T. J.
Martínez
, “
Ab initio quantum molecular dynamics
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
2002
), pp.
439
512
.
33.
G. A.
Worth
and
I.
Burghardt
,
Chem. Phys. Lett.
368
,
502
(
2003
).
34.
K.
Saita
and
D. V.
Shalashilin
,
J. Chem. Phys.
137
,
22A506
(
2012
).
35.
S. K.
Min
,
F.
Agostini
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
115
,
073001
(
2015
).
36.
C. C.
Martens
,
J. Phys. Chem. A
123
,
1110
(
2019
).
37.
L.
Dupuy
,
A.
Rikus
, and
N. T.
Maitra
,
J. Phys. Chem. Lett.
15
,
2643
(
2024
).
38.
K.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda Felix
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, in
Advances in Neural Information Processing Systems
(
Curran Associates
,
2017
), Vol.
30
.
39.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
40.
X.
Zhu
and
D. R.
Yarkony
,
Mol. Phys.
114
,
1983
(
2016
).
41.
J. O.
Richardson
,
J. Chem. Phys.
158
,
011102
(
2023
).
42.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
44.
X.
Wang
,
Y.
Wang
,
L.
Zhang
,
F.
Dai
, and
H.
Wang
,
Nucl. Fusion
62
,
126013
(
2022
).
45.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W. A.
Saidi
,
R.
Car
, and
E.
Weinan
, in
Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18
(
Curran Associates, Inc.
,
Red Hook, NY
,
2018
), pp.
4441
4451
.
46.

We use the definition of Ref. 2.

47.
L.
Zhang
,
M.
Chen
,
X.
Wu
,
H.
Wang
,
W.
E
, and
R.
Car
,
Phys. Rev. B
102
,
041121
(
2020
).
48.
G. M.
Sommers
,
M. F. C.
Andrade
,
L.
Zhang
,
H.
Wang
, and
R.
Car
,
Phys. Chem. Chem. Phys.
22
,
10592
(
2020
).
49.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
770
778
.
50.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Necula
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
,
JAX: Composable transformations of Python + NumPy programs
,
2018
.
51.
J.
Heek
,
A.
Levskaya
,
A.
Oliver
,
M.
Ritter
,
B.
Rondepierre
,
A.
Steiner
, and
M.
van Zee
,
Flax: A neural network library and ecosystem for JAX
,
2023
.
52.
I.
Babuschkin
,
K.
Baumli
,
A.
Bell
,
S.
Bhupatiraju
,
J.
Bruce
,
P.
Buchlovsky
,
D.
Budden
,
T.
Cai
,
A.
Clark
,
I.
Danihelka
,
A.
Dedieu
,
C.
Fantacci
,
J.
Godwin
,
C.
Jones
,
R.
Hemsley
,
T.
Hennigan
,
M.
Hessel
,
S.
Hou
,
S.
Kapturowski
,
T.
Keck
,
I.
Kemaev
,
M.
King
,
M.
Kunesch
,
L.
Martens
,
H.
Merzic
,
V.
Mikulik
,
T.
Norman
,
G.
Papamakarios
,
J.
Quan
,
R.
Ring
,
F.
Ruiz
,
A.
Sanchez
,
L.
Sartran
,
R.
Schneider
,
E.
Sezener
,
S.
Spencer
,
S.
Srinivasan
,
M.
Stanojević
,
W.
Stokowiec
,
L.
Wang
,
G.
Zhou
, and
F.
Viola
,
The DeepMind JAX Ecosystem
,
2020
.
53.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
54.
I.
Loshchilov
and
F.
Hutter
, arXiv:1711.05101 (
2017
).
55.
A.
Carof
,
S.
Giannini
, and
J.
Blumberger
,
J. Chem. Phys.
147
,
214113
(
2017
).
56.
M.
Barbatti
,
J. Chem. Theory Comput.
17
,
3010
(
2021
).
57.
D.
Tang
,
L.
Shen
, and
W.-H.
Fang
,
Phys. Chem. Chem. Phys.
23
,
13951
(
2021
).
58.
P.
Vindel-Zandbergen
,
L. M.
Ibele
,
J.-K.
Ha
,
S. K.
Min
,
B. F.
Curchod
, and
N. T.
Maitra
,
J. Chem. Theory Comput.
17
,
3852
(
2021
).
59.
D. M.
Huang
,
A. T.
Green
, and
C. C.
Martens
,
J. Chem. Phys.
159
,
214108
(
2023
).
60.
A. E.
Sifain
,
L.
Wang
, and
O. V.
Prezhdo
,
J. Chem. Phys.
144
,
211102
(
2016
).
61.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
62.
G.
Granucci
and
M.
Persico
,
J. Chem. Phys.
126
,
134114
(
2007
).
63.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
,
J. Chem. Phys.
133
,
134111
(
2010
).
64.
M.
Barbatti
,
A. J.
Aquino
, and
H.
Lischka
,
Mol. Phys.
104
,
1053
(
2006
).
65.
J.
Westermayr
and
P.
Marquetand
,
Mach. Learn.: Sci. Technol.
1
,
043001
(
2020
).
66.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
67.
I.
Batatia
,
D. P.
Kovacs
,
G.
Simm
,
C.
Ortner
, and
G.
Csányi
, in
Advances in Neural Information Processing Systems
(
Curran Associates
,
2022
), Vol.
35
, p.
11423
.
68.
E.
Cignoni
,
D.
Suman
,
J.
Nigam
,
L.
Cupellini
,
B.
Mennucci
, and
M.
Ceriotti
,
ACS Cent. Sci.
10
,
637
(
2024
).
69.
J.
Westermayr
and
R. J.
Maurer
,
Chem. Sci.
12
,
10755
(
2021
).
70.
T. Y.
Wang
,
S. P.
Neville
, and
M. S.
Schuurman
,
J. Phys. Chem. Lett.
14
,
7780
(
2023
).
71.
Y.
Shu
,
Z.
Varga
,
A. G.
Sampaio de Oliveira-Filho
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
17
,
1106
1116
(
2021
).
You do not currently have access to this content.