Chemical and physical processes on the surfaces of amorphous solids have been the focus of many studies over the past decades. These studies have established that dynamics in a thin layer near a glass surface are often dramatically faster than those in the glass bulk. Nevertheless, recent advances also emphasize the need for new experimental techniques capable of characterizing the structure and dynamics of the near-surface regions in glassy materials at the molecular length scale. Using a quasi-adiabatic fast scanning calorimetry (FSC) technique, we have investigated softening and vaporization of pure amorphous methylbenzene films of moderately heightened kinetic stability with thicknesses ranging from 1 to 20 nm. The analysis of the FSC thermograms reveals the existence of a high fictive temperature (liquid-like) layer on the surface of the solid glass with a thickness of 3.5 ± 0.5 nm or seven molecular diameters. Furthermore, the width of the boundary between liquid-like and solid layers in the films is less than 1 nm. These preliminary findings compliment and substantiate past determinations of the mobile surface layer thicknesses obtained by introduction of nanoparticles or spectroscopic molecular probes to near-surface regions of amorphous samples. The developed FSC methodology will advance the theoretical and computational research by providing calorimetric data on the enhanced interfacial dynamics phenomenon in a variety of low-molecular-weight amorphous materials.

1.
H.
Tian
,
Q.
Xu
,
H.
Zhang
,
R. D.
Priestley
, and
B.
Zuo
,
Appl. Phys. Rev.
9
(
1
),
011316
(
2022
).
2.
M. D.
Ediger
and
J. A.
Forrest
,
Macromolecules
47
(
2
),
471
478
(
2014
).
3.
J. R.
Dutcher
and
M. D.
Ediger
,
Science
319
(
5863
),
577
578
(
2008
).
4.
J.
Barták
,
J.
Málek
,
K.
Bagchi
,
M. D.
Ediger
,
Y.
Li
, and
L.
Yu
,
J. Chem. Phys.
154
(
7
),
074703
(
2021
).
5.
Y.
Zhang
and
Z.
Fakhraai
,
Phys. Rev. Lett.
118
(
6
),
066101
(
2017
).
6.
K.
Paeng
,
R.
Richert
, and
M. D.
Ediger
,
Soft Matter
8
(
3
),
819
826
(
2012
).
7.
C. R.
Daley
,
Z.
Fakhraai
,
M. D.
Ediger
, and
J. A.
Forrest
,
Soft Matter
8
(
7
),
2206
2212
(
2012
).
8.
L.
Zhu
,
C. W.
Brian
,
S. F.
Swallen
,
P. T.
Straus
,
M. D.
Ediger
, and
L.
Yu
,
Phys. Rev. Lett.
106
(
25
),
256103
(
2011
).
9.
K.
Paeng
,
S. F.
Swallen
, and
M. D.
Ediger
,
J. Am. Chem. Soc.
133
(
22
),
8444
8447
(
2011
).
10.
K.
Paeng
and
M. D.
Ediger
,
Macromolecules
44
(
17
),
7034
7042
(
2011
).
11.
R.
Malshe
,
M. D.
Ediger
,
L.
Yu
, and
J. J.
de Pablo
,
J. Chem. Phys.
134
(
19
),
194704
(
2011
).
12.
D.
Qi
,
M.
Ilton
, and
J. A.
Forrest
,
Eur. Phys. J. E
34
(
6
),
56
(
2011
).
13.
Z.
Fakhraai
and
J. A.
Forrest
,
Science
319
(
5863
),
600
604
(
2008
).
14.
Z.
Yang
,
Y.
Fujii
,
F. K.
Lee
,
C.-H.
Lam
, and
O. K. C.
Tsui
,
Science
328
(
5986
),
1676
1679
(
2010
).
15.
R.
Richert
,
M. E.
Tracy
,
A.
Guiseppi-Elie
, and
M. D.
Ediger
,
J. Chem. Phys.
160
(
3
),
034505
(
2024
).
16.
E.
Donth
,
The Glass Transition Relaxation Dynamics in Liquids and Disordered Materials
(
Springer-Verlag
,
New-York
,
2001
).
17.
P. D.
Gujrati
,
Phys. Rev. E
81
(
5
),
051130
(
2010
).
18.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
(
3
),
211
266
(
1994
).
19.
C.
Schick
and
R.
Androsch
,
Thermal Analysis of Polymeric Materials
(
Wiley
,
2022
), pp.
75
168
.
20.
C.
Schick
,
T. A.
Mukhametzyanov
, and
B. N.
Solomonov
,
Rev. Adv. Chem.
11
(
1–2
),
1
72
(
2021
).
21.
Y.
Gao
,
B.
Zhao
,
J. J.
Vlassak
, and
C.
Schick
,
Prog. Mater. Sci.
104
,
53
137
(
2019
).
22.
F.
Yi
and
D. A.
LaVan
,
Appl. Phys. Rev.
6
(
3
),
031302
(
2019
).
23.
C.
Schick
and
V.
Mathot
,
Fast Scanning Calorimetry
(
Springer International Publishing Switzerland
,
2016
).
24.
G. W. H.
Höhne
,
W. F.
Hemminger
, and
H. J.
Flammersheim
,
Differential Scanning Calorimetry
(
Springer
,
Berlin, Heidelberg
,
2003
).
25.
R.
Kaur
,
D.
Bhattacharya
,
U. S.
Cubeta
, and
V.
Sadtchenko
,
J. Chem. Phys.
158
(
16
),
164507
(
2023
).
26.
J.
Rafols-Ribe
,
M.
Gonzalez-Silveira
,
C.
Rodriguez-Tinoco
, and
J.
Rodriguez-Viejo
,
Phys. Chem. Chem. Phys.
19
(
18
),
11089
11097
(
2017
).
27.
D.
Bhattacharya
,
U.
Cubeta
, and
V.
Sadtchenko
, in
Fast Scanning Calorimetry
, edited by
C.
Schick
and
V.
Mathot
(
Springer
,
Cham, Switzerland
,
2016
), pp.
151
186
.
28.
J.
Rodríguez-Viejo
and
A. F.
Lopeandía
, in
Fast Scanning Calorimetry
, edited by
C.
Schick
and
V.
Mathot
(
Springer International Publishing
,
Cham
,
2016
), pp.
105
149
.
29.
C.
Rodríguez-Tinoco
,
M.
Gonzalez-Silveira
,
J.
Ràfols-Ribé
,
A. F.
Lopeandía
, and
J.
Rodríguez-Viejo
,
Phys. Chem. Chem. Phys.
17
(
46
),
31195
31201
(
2015
).
30.
C.
Rodríguez-Tinoco
,
M.
Gonzalez-Silveira
,
J.
Ràfols-Ribé
,
A. F.
Lopeandía
,
M. T.
Clavaguera-Mora
, and
J.
Rodríguez-Viejo
,
J. Phys. Chem. B
118
(
36
),
10795
10801
(
2014
).
31.
D.
Bhattacharya
and
V.
Sadtchenko
,
J. Chem. Phys.
141
(
9
),
094502
(
2014
).
32.
U.
Cubeta
and
V.
Sadtchenko
,
J. Chem. Phys.
150
,
094508
(
2019
).
33.
O.
Yamamuro
,
I.
Tsukushi
,
A.
Lindqvist
,
S.
Takahara
,
M.
Ishikawa
, and
T.
Matsuo
,
J. Phys. Chem. B
102
(
9
),
1605
1609
(
1998
).
34.
D.
Bhattacharya
and
V.
Sadtchenko
,
J. Chem. Phys.
142
(
16
),
164510
(
2015
).
35.
M. D.
Ediger
,
J. Chem. Phys.
147
(
21
),
210901
(
2017
).
36.
R.
Kaur
and
V.
Sadtchenko
,
J. Phys. Chem. Lett.
13
,
11112
11117
(
2022
).
37.
R. D.
Goodwin
,
J. Phys. Chem. Ref. Data
18
(
4
),
1565
1636
(
1989
).
38.
K.
Ishii
and
H.
Nakayama
,
PCCP
16
(
24
),
12073
12092
(
2014
).
39.
S.
Vyazovkin
,
K.
Chrissafis
,
M. L.
Di Lorenzo
,
N.
Koga
,
M.
Pijolat
,
B.
Roduit
,
N.
Sbirrazzuoli
, and
J. J.
Suñol
,
Thermochim. Acta
590
,
1
23
(
2014
).
40.
I. W. M.
Smith
,
Chem. Soc. Rev.
37
(
4
),
812
826
(
2008
).
41.
Y.
Sun
,
L.
Zhu
,
K. L.
Kearns
,
M. D.
Ediger
, and
L. A.
Yu
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
15
),
5990
5995
(
2011
).
42.
U.
Cubeta
,
D.
Bhattacharya
, and
V.
Sadtchenko
,
J. Chem. Phys.
147
(
1
),
014505
(
2017
).
43.
J.
Yin
and
J. A.
Forrest
,
Phys. Rev. Lett.
130
(
16
),
168101
(
2023
).
44.
M.
Ahrenberg
,
Y. Z.
Chua
,
K. R.
Whitaker
,
H.
Huth
,
M. D.
Ediger
, and
C.
Schick
,
J. Chem. Phys.
138
(
2
),
024501
(
2013
).
45.
F. E.
Livingston
,
J. A.
Smith
, and
S. M.
George
,
Surf. Sci.
423
(
2–3
),
145
159
(
1999
).
46.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
,
Rev. Mod. Phys.
81
(
2
),
739
805
(
2009
).
47.
I. M.
Hodge
and
J. M.
O’Reilly
,
J. Phys. Chem. B
103
(
20
),
4171
4176
(
1999
).
48.
A.
Dö\S
,
G.
Hinze
,
B.
Schiener
,
J.
Hemberger
, and
R.
Böhmer
,
J. Chem. Phys.
107
(
6
),
1740
1743
(
1997
).
49.
S. K.
Sinha
,
Z.
Jiang
, and
L. B.
Lurio
,
Adv. Mater.
26
(
46
),
7764
7785
(
2014
).
50.
Y. C.
Jean
,
J. D.
Van Horn
,
W.-S.
Hung
, and
K.-R.
Lee
,
Macromolecules
46
(
18
),
7133
7145
(
2013
).
51.
B.
Riechers
,
A.
Guiseppi-Elie
,
M. D.
Ediger
, and
R.
Richert
,
J. Chem. Phys.
150
(
21
),
214502
(
2019
).
52.
R.
Richert
,
J. Phys. Chem. B
128
(
22
),
5528
5533
(
2024
).
53.
M. J.
Burroughs
,
D.
Christie
,
L. A. G.
Gray
,
M.
Chowdhury
, and
R. D.
Priestley
,
Macromol. Chem. Phys.
219
(
3
),
1700368
(
2018
).
54.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
,
Science
315
(
5810
),
353
356
(
2007
).
55.
P.
Luo
,
S. E.
Wolf
,
S.
Govind
,
R. B.
Stephens
,
D. H.
Kim
,
C. Y.
Chen
,
T.
Nguyen
,
P.
Wąsik
,
M.
Zhernenkov
,
B.
McClimon
, and
Z.
Fakhraai
,
Nat. Mater.
23
(
5
),
688
694
(
2024
).
56.
P.
Luo
and
Z.
Fakhraai
,
Annu. Rev. Phys. Chem.
74
(
1
),
361
389
(
2023
).
You do not currently have access to this content.