Solid–water interfaces are crucial to many physical and chemical processes and are extensively studied using surface-specific sum-frequency generation (SFG) spectroscopy. To establish clear correlations between specific spectral signatures and distinct interfacial water structures, theoretical calculations using molecular dynamics (MD) simulations are required. These MD simulations typically need relatively long trajectories (a few nanoseconds) to achieve reliable SFG response function calculations via the dipole moment–polarizability time correlation function. However, the requirement for long trajectories limits the use of computationally expensive techniques, such as ab initio MD (AIMD) simulations, particularly for complex solid–water interfaces. In this work, we present a pathway for calculating vibrational spectra (IR, Raman, and SFG) of solid–water interfaces using machine learning (ML)-accelerated methods. We employ both the dipole moment–polarizability correlation function and the surface-specific velocity–velocity correlation function approaches to calculate SFG spectra. Our results demonstrate the successful acceleration of AIMD simulations and the calculation of SFG spectra using ML methods. This advancement provides an opportunity to calculate SFG spectra for complicated solid–water systems more rapidly and at a lower computational cost with the aid of ML.

1.
A.
Fujishima
,
X.
Zhang
, and
D.
Tryk
, “
TiO2 photocatalysis and related surface phenomena
,”
Surf. Sci. Rep.
63
,
515
(
2008
).
2.
O.
Bjorneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L. M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M. M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
(
2016
).
3.
G.
Rubasinghege
and
V. H.
Grassian
, “
Role(s) of adsorbed water in the surface chemistry of environmental interfaces
,”
Chem. Commun.
49
,
3071
(
2013
).
4.
M. P.
Gaigeot
,
M.
Sprik
, and
M.
Sulpizi
, “
Oxide/water interfaces: How the surface chemistry modifies interfacial water properties
,”
J. Phys.: Condens. Matter.
24
,
124106
(
2012
).
5.
N.
Kumar
,
S.
Neogi
,
P. R. C.
Kent
,
A. V.
Bandura
,
J. D.
Kubicki
,
D. J.
Wesolowski
,
D.
Cole
, and
J. O.
Sofo
, “
Hydrogen bonds and vibrations of water on (110) rutile
,”
J. Phys. Chem. C
113
,
13732
(
2009
).
6.
N.
Kumar
,
P. R.
Kent
,
A. V.
Bandura
,
J. D.
Kubicki
,
D. J.
Wesolowski
,
D. R.
Cole
, and
J. O.
Sofo
, “
Faster proton transfer dynamics of water on SnO2 compared to TiO2
,”
J. Chem. Phys.
134
,
044706
(
2011
).
7.
P.
Fenter
and
N. C.
Sturchio
, “
Mineral–water interfacial structures revealed by synchrotron X-ray scattering
,”
Prog. Surf. Sci.
77
,
171
(
2004
).
8.
K.
Amann-Winkel
,
M. C.
Bellissent-Funel
,
L. E.
Bove
,
T.
Loerting
,
A.
Nilsson
,
A.
Paciaroni
,
D.
Schlesinger
, and
L.
Skinner
, “
X-ray and neutron scattering of water
,”
Chem. Rev.
116
,
7570
(
2016
).
9.
H. A.
Al-Abadleh
and
V. H.
Grassian
, “
FT-IR study of water adsorption on aluminum oxide surfaces
,”
Langmuir
19
,
341
(
2002
).
10.
J.
Xu
,
M.
Chen
,
C.
Zhang
, and
X.
Wu
, “
First-principles study of the infrared spectrum in liquid water from a systematically improved description of H-bond network
,”
Phys. Rev. B
99
,
205123
(
2019
).
11.
Q.
Wan
,
L.
Spanu
,
G. A.
Galli
, and
F.
Gygi
, “
Raman spectra of liquid water from ab initio molecular dynamics: Vibrational signatures of charge fluctuations in the hydrogen bond network
,”
J. Chem. Theory Comput.
9
,
4124
(
2013
).
12.
F.
Perakis
,
L.
De Marco
,
A.
Shalit
,
F.
Tang
,
Z. R.
Kann
,
T. D.
Kuhne
,
R.
Torre
,
M.
Bonn
, and
Y.
Nagata
, “
Vibrational spectroscopy and dynamics of water
,”
Chem. Rev.
116
,
7590
(
2016
).
13.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequency generation
,”
Nature
337
,
519
(
1989
).
14.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
, “
Vibrational spectroscopy of water at the vapor/water interface
,”
Phys. Rev. Lett.
70
,
2313
(
1993
).
15.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
, “
Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity
,”
Science
264
,
826
(
1994
).
16.
F.
Tang
,
T.
Ohto
,
S.
Sun
,
J. R.
Rouxel
,
S.
Imoto
,
E. H. G.
Backus
,
S.
Mukamel
,
M.
Bonn
, and
Y.
Nagata
, “
Molecular structure and modeling of water-air and ice-air interfaces monitored by sum-frequency generation
,”
Chem. Rev.
120
,
3633
(
2020
).
17.
M.
Sovago
,
R. K.
Campen
,
G. W.
Wurpel
,
M.
Muller
,
H. J.
Bakker
, and
M.
Bonn
, “
Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling
,”
Phys. Rev. Lett.
100
,
173901
(
2008
).
18.
M.
Vinaykin
and
A. V.
Benderskii
, “
Vibrational sum-frequency spectrum of the water bend at the air/water Interface
,”
J. Phys. Chem. Lett.
3
,
3348
(
2012
).
19.
C.-S.
Tian
and
Y. R.
Shen
, “
Isotopic dilution study of the water/vapor interface by phase-sensitive sum-frequency vibrational spectroscopy
,”
J. Am. Chem. Soc.
131
,
2790
(
2009
).
20.
L.
Zhang
,
C.
Tian
,
G. A.
Waychunas
, and
Y. R.
Shen
, “
Structures and charging of α-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy
,”
J. Am. Chem. Soc.
130
,
7686
(
2008
).
21.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
, “
Vibrational spectra of water molecules at quartz/water interfaces
,”
Phys. Rev. Lett.
72
,
238
(
1994
).
22.
A.
Abdelmonem
,
E. H. G.
Backus
,
N.
Hoffmann
,
M. A.
Sánchez
,
J. D.
Cyran
,
A.
Kiselev
, and
M.
Bonn
, “
Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)
,”
Atmos. Chem. Phys.
17
,
7827
(
2017
).
23.
F.
Wei
,
S. H.
Urashima
,
S.
Nihonyanagi
, and
T.
Tahara
, “
Elucidation of the pH-dependent electric double layer structure at the silica/water interface using heterodyne-detected vibrational sum frequency generation spectroscopy
,”
J. Am. Chem. Soc.
145
,
8833
(
2023
).
24.
F.
De Angelis
,
C.
Di Valentin
,
S.
Fantacci
,
A.
Vittadini
, and
A.
Selloni
, “
Theoretical studies on anatase and less common TiO2 phases: Bulk, surfaces, and nanomaterials
,”
Chem. Rev.
114
,
9708
(
2014
).
25.
S.
Hosseinpour
,
F.
Tang
,
F.
Wang
,
R. A.
Livingstone
,
S. J.
Schlegel
,
T.
Ohto
,
M.
Bonn
,
Y.
Nagata
, and
E. H. G.
Backus
, “
Chemisorbed and physisorbed water at the TiO2/water interface
,”
J. Phys. Chem. Lett.
8
,
2195
(
2017
).
26.
J. L.
Bañuelos
,
E.
Borguet
,
G. E.
Brown
, Jr.
,
R. T.
Cygan
,
J. J.
DeYoreo
,
P. M.
Dove
,
M.-P.
Gaigeot
,
F. M.
Geiger
,
J. M.
Gibbs
,
V. H.
Grassian
,
A. G.
Ilgen
,
Y.-S.
Jun
,
N.
Kabengi
,
L.
Katz
,
J. D.
Kubicki
,
J.
Lützenkirchen
,
C. V.
Putnis
,
R. C.
Remsing
,
K. M.
Rosso
,
G.
Rother
,
M.
Sulpizi
,
M.
Villalobos
, and
H.
Zhang
, “
Oxide-and silicate–water interfaces and their roles in technology and the environment
,”
Chem. Rev.
123
,
6413
(
2023
).
27.
R.
Wang
,
M.
DelloStritto
,
M. L.
Klein
,
E.
Borguet
, and
V.
Carnevale
, “
Topological properties of interfacial hydrogen bond networks
,”
Phys. Rev. B
110
,
014105
(
2024
).
28.
F.
Tang
,
Structures and Dynamics of Interfacial Water: Input from Theoretical Vibrational Sum-Frequency Spectroscopy
(
Springer Nature Singapore
,
2019
).
29.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
(
1985
).
30.
M.
Chen
,
H. Y.
Ko
,
R. C.
Remsing
,
M. F.
Calegari Andrade
,
B.
Santra
,
Z.
Sun
,
A.
Selloni
,
R.
Car
,
M. L.
Klein
,
J. P.
Perdew
, and
X.
Wu
, “
Ab initio theory and modeling of water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10846
(
2017
).
31.
A.
Groß
and
S.
Sakong
, “
Ab initio simulations of water/metal interfaces
,”
Chem. Rev.
122
,
10746
(
2022
).
32.
Y.
Nagata
and
S.
Mukamel
, “
Vibrational sum-frequency generation spectroscopy at the water/lipid interface: Molecular dynamics simulation study
,”
J. Am. Chem. Soc.
132
,
6434
(
2010
).
33.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M. P.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
(
2013
).
34.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
, “
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity–velocity correlation function
,”
J. Chem. Phys.
143
,
124702
(
2015
).
35.
F.
Tang
,
T.
Ohto
,
T.
Hasegawa
,
W. J.
Xie
,
L.
Xu
,
M.
Bonn
, and
Y.
Nagata
, “
Definition of free O–H groups of water at the air–water interface
,”
J. Chem. Theory Comput.
14
,
357
(
2018
).
36.
T.
Seki
,
C. C.
Yu
,
X.
Yu
,
T.
Ohto
,
S.
Sun
,
K.
Meister
,
E. H. G.
Backus
,
M.
Bonn
, and
Y.
Nagata
, “
Decoding the molecular water structure at complex interfaces through surface-specific spectroscopy of the water bending mode
,”
Phys. Chem. Chem. Phys.
22
,
10934
(
2020
).
37.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
38.
A. P.
Bartok
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csanyi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
39.
J.
Han
,
L.
Zhang
,
R.
Car
, and
E.
Weinan
, “
Deep potential: A general representation of a many-body potential energy surface
,”
Commun. Comput. Phys.
23
,
629
(
2018
).
40.
M. F.
Calegari Andrade
,
H. Y.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
, “
Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics
,”
Chem. Sci.
11
,
2335
(
2020
).
41.
Y. B.
Zhuang
,
R. H.
Bi
, and
J.
Cheng
, “
Resolving the odd–even oscillation of water dissociation at rutile TiO2(110)–water interface by machine learning accelerated molecular dynamics
,”
J. Chem. Phys.
157
,
164701
(
2022
).
42.
Y.
Litman
,
K. Y.
Chiang
,
T.
Seki
,
Y.
Nagata
, and
M.
Bonn
, “
Surface stratification determines the interfacial water structure of simple electrolyte solutions
,”
Nat. Chem.
16
,
644
(
2024
).
43.
Y.
Wang
,
F.
Tang
,
X.
Yu
,
T.
Ohto
,
Y.
Nagata
, and
M.
Bonn
, “
Heterodyne-detected sum-frequency generation vibrational spectroscopy reveals aqueous molecular structure at the suspended graphene/water interface
,”
Angew. Chem., Int. Ed.
63
,
e202319503
(
2024
).
44.
L.
Zhang
,
M.
Chen
,
X.
Wu
,
H.
Wang
,
E.
Weinan
, and
R.
Car
, “
Deep neural network for the dielectric response of insulators
,”
Phys. Rev. B
102
,
041121
(
2020
).
45.
G. M.
Sommers
,
M. F.
Calegari Andrade
,
L.
Zhang
,
H.
Wang
, and
R.
Car
, “
Raman spectrum and polarizability of liquid water from deep neural networks
,”
Phys. Chem. Chem. Phys.
22
,
10592
(
2020
).
46.
P.
Schienbein
, “
Spectroscopy from machine learning by accurately representing the atomic polar tensor
,”
J. Chem. Theory Comput.
19
,
705
(
2023
).
47.
M. F.
Calegari Andrade
and
T. A.
Pham
, “
Probing confinement effects on the infrared spectra of water with deep potential molecular dynamics simulations
,”
J. Phys. Chem. Lett.
14
,
5560
(
2023
).
48.
V.
Kapil
,
D. P.
Kovacs
,
G.
Csanyi
, and
A.
Michaelides
, “
First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects
,”
Faraday Discuss.
249
,
50
(
2024
).
49.
Y.
Litman
,
J.
Lan
,
Y.
Nagata
, and
D. M.
Wilkins
, “
Fully first-principles surface spectroscopy with machine learning
,”
J. Phys. Chem. Lett.
14
,
8175
(
2023
).
50.
M.
de la Puente
,
A.
Gomez
, and
D.
Laage
, “
Neural network-based sum-frequency generation spectra of pure and acidified water interfaces with air
,”
J. Phys. Chem. Lett.
15
,
3096
(
2024
).
51.
Z.
Łodziana
,
J. K.
Nørskov
, and
P.
Stoltze
, “
The stability of the hydroxylated (0001) surface of α-Al2O3
,”
J. Chem. Phys.
118
,
11179
(
2003
).
52.
M. J.
DelloStritto
,
S. M.
Piontek
,
M. L.
Klein
, and
E.
Borguet
, “
Effect of functional and electron correlation on the structure and spectroscopy of the Al2O3(001)–H2O Interface
,”
J. Phys. Chem. Lett.
10
,
2031
(
2019
).
53.
S. M.
Piontek
,
M.
DelloStritto
,
B.
Mandal
,
T.
Marshall
,
M. L.
Klein
, and
E.
Borguet
, “
Probing heterogeneous charge distributions at the α-Al2O3(0001)/H2O interface
,”
J. Am. Chem. Soc.
142
,
12096
(
2020
).
54.
X.
Zhang
,
C. G.
Arges
, and
R.
Kumar
, “
Computational investigations of the water structure at the α-Al2O3(0001)-water interface
,”
J. Phys. Chem. C
127
,
15600
(
2023
).
55.
T. D.
Kuhne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schutt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borstnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Muller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
57.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
58.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
59.
B. G.
Lippert
and
J. H.
Parrinello
, “
A hybrid Gaussian and plane wave density functional scheme
,”
Mol. Phys.
92
,
477
(
2010
).
60.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
61.
J.
VandeVondele
and
J.
Hutter
, “
An efficient orbital transformation method for electronic structure calculations
,”
J. Chem. Phys.
118
,
4365
(
2003
).
62.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
(
2018
).
63.
J.
Zeng
,
D.
Zhang
,
D.
Lu
,
P.
Mo
,
Z.
Li
,
Y.
Chen
,
M.
Rynik
,
L.
Huang
,
Z.
Li
,
S.
Shi
,
Y.
Wang
,
H.
Ye
,
P.
Tuo
,
J.
Yang
,
Y.
Ding
,
Y.
Li
,
D.
Tisi
,
Q.
Zeng
,
H.
Bao
,
Y.
Xia
,
J.
Huang
,
K.
Muraoka
,
Y.
Wang
,
J.
Chang
,
F.
Yuan
,
S. L.
Bore
,
C.
Cai
,
Y.
Lin
,
B.
Wang
,
J.
Xu
,
J. X.
Zhu
,
C.
Luo
,
Y.
Zhang
,
R. E. A.
Goodall
,
W.
Liang
,
A. K.
Singh
,
S.
Yao
,
J.
Zhang
,
R.
Wentzcovitch
,
J.
Han
,
J.
Liu
,
W.
Jia
,
D. M.
York
,
W.
E
,
R.
Car
,
L.
Zhang
, and
H.
Wang
, “
DeePMD-kit v2: A software package for deep potential models
,”
J. Chem. Phys.
159
,
054801
(
2023
).
64.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
65.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
66.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
67.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
100
,
191
(
2002
).
68.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
69.
M.
Sharma
,
R.
Resta
, and
R.
Car
, “
Intermolecular dynamical charge fluctuations in water: A signature of the H-bond network
,”
Phys. Rev. Lett.
95
,
187401
(
2005
).
70.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
(
1997
).
71.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
72.
I.
Souza
,
J.
Iniguez
, and
D.
Vanderbilt
, “
First-principles approach to insulators in finite electric fields
,”
Phys. Rev. Lett.
89
,
117602
(
2002
).
73.
P.
Umari
and
A.
Pasquarello
, “
Ab initio molecular dynamics in a finite homogeneous electric field
,”
Phys. Rev. Lett.
89
,
157602
(
2002
).
74.
Y.
Nagata
,
C. S.
Hsieh
,
T.
Hasegawa
,
J.
Voll
,
E. H.
Backus
, and
M.
Bonn
, “
Water bending mode at the water-vapor interface probed by sum-frequency generation spectroscopy: A combined molecular dynamics simulation and experimental study
,”
J. Phys. Chem. Lett.
4
,
1872
(
2013
).
75.
C.
Liang
,
J.
Jeon
, and
M.
Cho
, “
Ab initio modeling of the vibrational sum-frequency generation spectrum of interfacial water
,”
J. Phys. Chem. Lett.
10
,
1153
(
2019
).
76.
B. M.
Auer
and
J. L.
Skinner
, “
IR and Raman spectra of liquid water: Theory and interpretation
,”
J. Chem. Phys.
128
,
224511
(
2008
).
77.
S. A.
Corcelli
and
J. L.
Skinner
, “
Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C
,”
J. Phys. Chem. A
109
,
6154
(
2005
).
78.
P. H.
Berens
and
K. R.
Wilson
, “
Molecular dynamics and spectra. I. Diatomic rotation and vibration
,”
J. Chem. Phys.
74
,
4872
(
1981
).
79.
A.
Bankura
,
A.
Karmakar
,
V.
Carnevale
,
A.
Chandra
, and
M. L.
Klein
, “
Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics
,”
J. Phys. Chem. C
118
,
29401
(
2014
).
80.
P.
Huang
,
T. A.
Pham
,
G.
Galli
, and
E.
Schwegler
, “
Alumina(0001)/water interface: Structural properties and infrared spectra from first-principles molecular dynamics simulations
,”
J. Phys. Chem. C
118
,
8944
(
2014
).
81.
M.
DelloStritto
,
S. M.
Piontek
,
M. L.
Klein
, and
E.
Borgue
, “
Relating interfacial order to sum frequency generation with ab initio simulations of the aqueous Al2O3 (0001) and (1120̄) interfaces
,”
J. Phys. Chem. C
122
,
21284
(
2018
).
82.
E.
Duboue-Dijon
and
D.
Laage
, “
Characterization of the local structure in liquid water by various order parameters
,”
J. Phys. Chem. B
119
,
8406
(
2015
).
83.
P. L.
Chau
and
A. J.
Hardwick
, “
A new order parameter for tetrahedral configurations
,”
Mol. Phys.
93
,
511
(
2010
).
84.
Y.
Nagata
,
T.
Hasegawa
,
E. H.
Backus
,
K.
Usui
,
S.
Yoshimune
,
T.
Ohto
, and
M.
Bonn
, “
The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface
,”
Phys. Chem. Chem. Phys.
17
,
23559
(
2015
).
85.
G.
Melani
,
Y.
Nagata
,
J.
Wirth
, and
P.
Saalfrank
, “
Vibrational spectroscopy of hydroxylated α-Al2O3 (0001) surfaces with and without water: An ab initio molecular dynamics study
,”
J. Chem. Phys.
149
,
014707
(
2018
).
86.
T.
Ohto
,
M.
Dodia
,
J.
Xu
,
S.
Imoto
,
F.
Tang
,
F.
Zysk
,
T. D.
Kuhne
,
Y.
Shigeta
,
M.
Bonn
,
X.
Wu
, and
Y.
Nagata
, “
Accessing the accuracy of density functional theory through structure and dynamics of the water–air interface
,”
J. Phys. Chem. Lett.
10
,
4914
(
2019
).
87.
R.
Khatib
,
E. H.
Backus
,
M.
Bonn
,
M. J.
Perez-Haro
,
M. P.
Gaigeot
, and
M.
Sulpizi
, “
Water orientation and hydrogen-bond structure at the fluorite/water interface
,”
Sci. Rep.
6
,
24287
(
2016
).
88.
P.
Larouche
,
J. J.
Max
, and
C.
Chapados
, “
Isotope effects in liquid water by infrared spectroscopy. II. Factor analysis of the temperature effect on H2O and D2O
,”
J. Chem. Phys.
129
,
064503
(
2008
).
89.
C.
Zhang
,
D.
Donadio
, and
G.
Galli
, “
First-principle analysis of the IR stretching band of liquid water
,”
J. Phys. Chem. Lett.
1
,
1398
(
2010
).
90.
J. R.
Scherer
,
M. K.
Go
, and
S.
Kint
, “
Raman spectra and structure of water from −10 to 90.deg.
,”
J. Phys. Chem.
78
,
1304
(
1974
).
You do not currently have access to this content.