The nitrile (C≡N) stretching vibration is widely used as a site-specific environmental probe of proteins and, as such, many computational studies have been used to investigate the factors that affect its frequency (νCN). These studies, most of which were carried out in the ground electronic state of the molecule of interest, revealed that the formation of a normal or linear hydrogen bond (H-bond) with the nitrile group results in a blueshift in its νCN. Recently, however, several experimental studies showed that for certain aromatic nitriles, solvent relaxations in their excited electronic state(s) induce a redshift (blueshift) in νCN in protic (aprotic) solvents, suggesting that the effect of hydrogen-bonding (H-bonding) interactions on νCN may depend on the electronic state of the molecule. To test this possibility, herein we combine molecular dynamics simulations and quantum mechanical calculations to assess the effect of H-bonding interactions on the νCN of 5-cyanoindole (5-CNI) in its different electronic states. We find that its C≡N group can form either one H-bond (single-H-bond) or two H-bonds (d-H-bonds) with the solvent molecules and that in the ground electronic state, a single-H-bond can lead νCN to shift either to a higher or lower frequency, depending on its angle, which is consistent with previous studies, whereas the d-H-bonds cause νCN to redshift. However, in its lowest-lying excited electronic state (i.e., S1), which has the characteristics of a charge-transfer state, all H-bonds induce a redshift in νCN, with the d-H-bonds being most effective in this regard.

1.
R.
Feng
,
M.
Wang
,
W.
Zhang
, and
F.
Gai
, “
Unnatural amino acids for biological spectroscopy and microscopy
,”
Chem. Rev.
124
,
6501
6542
(
2024
).
2.
L.
Zhou
,
R.
Feng
,
W.
Zhang
, and
F.
Gai
, “
Triple-bond vibrations: Emerging applications in energy and biological sciences
,”
J. Phys. Chem. Lett.
15
,
187
200
(
2024
).
3.
Y.
Yang
,
J.
Liu
,
R.
Feng
,
W.
Zhang
, and
F.
Gai
, “
C≡N stretching frequency as a convenient reporter of charge separation in molecular systems
,”
J. Phys. Chem. B
127
(
31
),
6999
7003
(
2023
).
4.
S. G.
Boxer
, “
Stark realities
,”
J. Phys. Chem. B
113
,
2972
2983
(
2009
).
5.
J. D.
Slocum
and
L. J.
Webb
, “
Measuring electric fields in biological matter using the vibrational Stark effect of nitrile probes
,”
Annu. Rev. Phys. Chem.
69
(
1
),
253
271
(
2018
).
6.
P.
Deb
,
T.
Haldar
,
S. M.
Kashid
,
S.
Banerjee
,
S.
Chakrabarty
, and
S.
Bagchi
, “
Correlating nitrile IR frequencies to local electrostatics quantifies noncovalent interactions of peptides and proteins
,”
J. Phys. Chem. B
120
(
17
),
4034
4046
(
2016
).
7.
I. M.
Pazos
,
A.
Ghosh
,
M. J.
Tucker
, and
F.
Gai
, “
Ester carbonyl vibration as a sensitive probe of protein local electric field
,”
Angew. Chem., Int. Ed.
53
(
24
),
6080
6084
(
2014
).
8.
J. R.
Reimers
and
L. E.
Hall
, “
The solvation of acetonitrile
,”
J. Am. Chem. Soc.
121
(
15
),
3730
3744
(
1999
).
9.
J. H.
Choi
,
K. I.
Oh
,
H.
Lee
,
C.
Lee
, and
M.
Cho
, “
Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis
,”
J. Chem. Phys.
128
(
13
),
134506
(
2008
).
10.
M. M.
Waegele
and
F.
Gai
, “
Computational modeling of the nitrile stretching vibration of 5-cyanoindole in water
,”
J. Phys. Chem. Lett.
1
(
4
),
781
786
(
2010
).
11.
K. I.
Oh
,
J. H.
Choi
,
J. H.
Lee
,
J. B.
Han
,
H.
Lee
, and
M.
Cho
, “
Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies
,”
J. Chem. Phys.
128
(
15
),
154504
(
2008
).
12.
J.
Liu
,
R.
Feng
,
L.
Zhou
,
F.
Gai
, and
W.
Zhang
, “
Photoenhancement of the C≡N stretching vibration intensity of aromatic nitriles
,”
J. Phys. Chem. Lett.
13
(
41
),
9745
9751
(
2022
).
13.
B.
Wang
,
Z.
Zhou
,
Q.
Zhang
,
B.
Dong
,
X. W.
Kang
, and
B.
Ding
, “
Elucidating state-specific dynamics of 1La and 1Lb in cyanoindole derivatives using UV/Vis pump IR detection
,”
Chem. Phys.
576
,
112095
(
2024
).
14.
O.
Oeltermann
,
C.
Brand
,
B.
Engels
,
J.
Tatchen
, and
M.
Schmitt
, “
The structure of 5-cyanoindole in the ground and the lowest electronically excited singlet states, deduced from rotationally resolved electronic spectroscopy and ab initio theory
,”
Phys. Chem. Chem. Phys.
14
(
29
),
10266
10270
(
2012
).
15.
D.
Yokogawa
, “
Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)
,”
J. Chem. Phys.
145
(
9
),
094101
(
2016
).
16.
P. R.
Callis
, “
Molecular orbital theory of the 1Lb and 1La states of indole
,”
J. Chem. Phys.
95
(
6
),
4230
4240
(
1991
).
17.
P. R.
Callis
, “
1La and 1Lb transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins
,”
Methods Enzymol.
278
,
113
150
(
1997
).
18.
W. M.
Kwok
,
M. W.
George
,
D. C.
Grills
,
C.
Ma
,
P.
Matousek
,
W.
Parker
,
D.
Phillips
,
W. T.
Toner
, and
M.
Towrie
, “
Direct observation of a hydrogen-bonded charge-transfer state of 4-dimethylaminobenzonitrile in methanol by time-resolved IR spectroscopy
,”
Angew. Chem., Int. Ed.
42
(
16
),
1826
1830
(
2003
).
19.
G. J.
Zhao
and
K. L.
Han
, “
Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol
,”
J. Comput. Chem.
29
(
12
),
2010
(
2008
).
20.
B.
Stuhlmann
,
A.
Gräßle
, and
M.
Schmitt
, “
Determination of the geometry change of 5-cyanoindole upon electronic excitation from a combined Franck–Condon/rotational constants fit
,”
Phys. Chem. Chem. Phys.
16
(
3
),
899
905
(
2014
).
21.
S.
Abou-Hatab
and
S.
Matsika
, “
Theoretical investigation of Positional substitution and solvent effects on n-cyanoindole fluorescent probes
,”
J. Phys. Chem. B
123
(
34
),
7424
7435
(
2019
).
22.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
(
1–3
),
51
57
(
2004
).
23.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
24.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
(
1
),
117
129
(
1981
).
25.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Peters- son
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
A. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
F. W.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Hen- derson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
F.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
, and
R. L.
Martin
,
Gaussian 16, Revision B.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
26.
D.
Roy
,
A. K.
Todd
, and
M. M.
John
, GaussView Version 6,
2019
.
27.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1
,
19
25
(
2015
).
28.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
29.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
(
4598
),
671
680
(
1983
).
30.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F. V.
Gunsteren
,
A.
Di nola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
(
8
),
3684
3690
(
1984
).
31.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
32.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
33.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
D. S.
Cerutti
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
N.
Forouzesh
,
T. J.
Giese
,
A. W.
Götz
,
H.
Gohlke
,
S.
Izadi
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
T.
Kurtzman
,
T. S.
Lee
,
P.
Li
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Manathunga
,
M. R.
Machado
,
H. M.
Nguyen
,
K. A.
O’hearn
,
A. V.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rah- namoun
,
A.
Risheh
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Swails
,
J.
Wang
,
H.
Wei
,
X.
Wu
,
Y.
Wu
,
S.
Zhang
,
S.
Zhao
,
Q.
Zhu
,
T. E.
Cheatham
,
D. R. I.
Roe
,
A.
Roitberg
,
C.
Simmerling
,
D. M.
York
,
M. C.
Nagan
, and
K. M.
Merz
, Jr.
, “
AmberTools
,”
J. Chem. Inf. Model.
63
(
20
),
6183
6191
(
2023
).
34.
C.
Caleman
,
P. J.
van Maaren
,
M.
Hong
,
J. S.
Hub
,
L. T.
Costa
, and
D.
van der Spoel
, “
Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant
,”
J. Chem. Theory Comput.
8
(
1
),
61
74
(
2012
).
35.
A. K.
Malde
,
L.
Zuo
,
M.
Breeze
,
M.
Stroet
,
D.
Poger
,
P. C.
Nair
,
C.
Oostenbrink
, and
A. E.
Mark
, “
An automated force field Topology builder (ATB) and repository: Version 1.0
,”
J. Chem. Theory Comput.
7
(
12
),
4026
4037
(
2011
).
36.
T.
Lu
,
Version 1.0 (dev3.1)
, available online: http://sobereva.com/soft/Sobtop (accessed 10 December 2023).
37.
B.
Błasiak
,
A. W.
Ritchie
,
L. J.
Webb
, and
M.
Cho
, “
Vibrational solvatochromism of nitrile infrared probes: Beyond the vibrational Stark dipole approach
,”
Phys. Chem. Chem. Phys.
18
(
27
),
18094
18111
(
2016
).
38.
S.
Kozuch
,
J. M. L.
Martin
, and
H.
Bonds
, “
Halogen bonds: Benchmarks and theoretical analysis
,”
J. Chem. Theory Comput.
9
(
4
),
1918
1931
(
2013
).
39.
R.
Zhao
,
J. C.
Shirley
,
E.
Lee
,
A.
Grofe
,
H.
Li
,
C. R.
Baiz
, and
J.
Gao
, “
Origin of thiocyanate spectral shifts in water and organic solvents
,”
J. Chem. Phys.
156
(
10
),
104106
(
2022
).
40.
W.
Zhang
,
B. N.
Markiewicz
,
R. S.
Doerksen
,
A. B.
Smith III
, and
F. I.
Gai
, “
C≡N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: What determines its frequency?
,”
Phys. Chem. Chem. Phys.
18
(
10
),
7027
7034
(
2016
).
41.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2016
).
42.
Y.
Mao
and
M.
Head-Gordon
, “
Probing blue-shifting hydrogen bonds with adiabatic energy decomposition analysis
,”
J. Phys. Chem. Lett.
10
(
14
),
3899
3905
(
2019
).
43.
X.
Li
,
L.
Liu
, and
H. B.
Schlegel
, “
On the physical origin of blue-shifted hydrogen bonds
,”
J. Am. Chem. Soc.
124
(
32
),
9639
9647
(
2002
).
You do not currently have access to this content.