Quantum states in complex aggregates are unavoidably affected by environmental effects, which typically cannot be accurately modeled by simple Markovian processes. As system sizes scale up, nonperturbative simulation becomes thus unavoidable, but they are extremely challenging due to the intimate interplay of intrinsic many-body interaction and time-retarded feedback from environmental degrees of freedom. In this work, we utilize the recently developed quantum dissipation with minimally extended state space approach to address reservoir induced long-ranged temporal correlations in finite size Ising-type spin chains. For thermal reservoirs with ohmic and subohmic spectral density, we simulate the quantum time evolution from finite to zero temperature. The competition between thermal fluctuations, quantum fluctuations, and anti-/ferromagnetic interactions reveals a rich pattern of dynamical phases, including dissipative induced phase transitions and spatiotemporal correlations.

1.
G. D.
Mahan
,
Many-Particle Physics
(
Springer Science & Business Media
,
2013
).
2.
I. M.
Georgescu
,
S.
Ashhab
, and
F.
Nori
, “
Quantum simulation
,”
Rev. Mod. Phys.
86
,
153
185
(
2014
).
3.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
4.
P.
Forn-Díaz
,
L.
Lamata
,
E.
Rico
,
J.
Kono
, and
E.
Solano
, “
Ultrastrong coupling regimes of light-matter interaction
,”
Rev. Mod. Phys.
91
,
025005
(
2019
).
5.
A.
Frisk Kockum
,
A.
Miranowicz
,
S.
De Liberato
,
S.
Savasta
, and
F.
Nori
, “
Ultrastrong coupling between light and matter
,”
Nat. Rev. Phys.
1
,
19
40
(
2019
).
6.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, “
Circuit quantum electrodynamics
,”
Rev. Mod. Phys.
93
,
025005
(
2021
).
7.
S.
Diehl
,
A.
Micheli
,
A.
Kantian
,
B.
Kraus
,
H.
Büchler
, and
P.
Zoller
, “
Quantum states and phases in driven open quantum systems with cold atoms
,”
Nat. Phys.
4
,
878
883
(
2008
).
8.
F.
Verstraete
,
M. M.
Wolf
, and
J.
Ignacio Cirac
, “
Quantum computation and quantum-state engineering driven by dissipation
,”
Nat. Phys.
5
,
633
636
(
2009
).
9.
S.
Diehl
,
A.
Tomadin
,
A.
Micheli
,
R.
Fazio
, and
P.
Zoller
, “
Dynamical phase transitions and instabilities in open atomic many-body systems
,”
Phys. Rev. Lett.
105
,
015702
(
2010
).
10.
J. P.
Garrahan
and
I.
Lesanovsky
, “
Thermodynamics of quantum jump trajectories
,”
Phys. Rev. Lett.
104
,
160601
(
2010
).
11.
H.
Weimer
,
M.
Müller
,
I.
Lesanovsky
,
P.
Zoller
, and
H. P.
Büchler
, “
A Rydberg quantum simulator
,”
Nat. Phys.
6
,
382
388
(
2010
).
12.
J. T.
Barreiro
,
M.
Müller
,
P.
Schindler
,
D.
Nigg
,
T.
Monz
,
M.
Chwalla
,
M.
Hennrich
,
C. F.
Roos
,
P.
Zoller
, and
R.
Blatt
, “
An open-system quantum simulator with trapped ions
,”
Nature
470
,
486
491
(
2011
).
13.
C.
Ates
,
B.
Olmos
,
J. P.
Garrahan
, and
I.
Lesanovsky
, “
Dynamical phases and intermittency of the dissipative quantum Ising model
,”
Phys. Rev. A
85
,
043620
(
2012
).
14.
Z.
Cai
and
T.
Barthel
, “
Algebraic versus exponential decoherence in dissipative many-particle systems
,”
Phys. Rev. Lett.
111
,
150403
(
2013
).
15.
L.
Krinner
,
M.
Stewart
,
A.
Pazmino
,
J.
Kwon
, and
D.
Schneble
, “
Spontaneous emission of matter waves from a tunable open quantum system
,”
Nature
559
,
589
592
(
2018
).
16.
E.
Altman
,
K. R.
Brown
,
G.
Carleo
,
L. D.
Carr
,
E.
Demler
,
C.
Chin
,
B.
DeMarco
,
S. E.
Economou
,
M. A.
Eriksson
,
K.-M. C.
Fu
,
M.
Greiner
,
K. R.
Hazzard
,
R. G.
Hulet
,
A. J.
Kollár
,
B. L.
Lev
,
M. D.
Lukin
,
R.
Ma
,
X.
Mi
,
S.
Misra
,
C.
Monroe
,
K.
Murch
,
Z.
Nazario
,
K.-K.
Ni
,
A. C.
Potter
,
P.
Roushan
,
M.
Saffman
,
M.
Schleier-Smith
,
I.
Siddiqi
,
R.
Simmonds
,
M.
Singh
,
I.
Spielman
,
K.
Temme
,
D. S.
Weiss
,
J.
Vučković
,
V.
Vuletić
,
J.
Ye
, and
M.
Zwierlein
, “
Quantum simulators: Architectures and opportunities
,”
PRX Quantum
2
,
017003
(
2021
).
17.
H.
Weimer
,
A.
Kshetrimayum
, and
R.
Orús
, “
Simulation methods for open quantum many-body systems
,”
Rev. Mod. Phys.
93
,
015008
(
2021
).
18.
P. M.
Harrington
,
E. J.
Mueller
, and
K. W.
Murch
, “
Engineered dissipation for quantum information science
,”
Nat. Rev. Phys.
4
,
660
671
(
2022
).
19.
J.
Majer
,
J.
Chow
,
J.
Gambetta
,
J.
Koch
,
B.
Johnson
,
J.
Schreier
,
L.
Frunzio
,
D.
Schuster
,
A. A.
Houck
,
A.
Wallraff
et al, “
Coupling superconducting qubits via a cavity bus
,”
Nature
449
,
443
447
(
2007
).
20.
R.
Ma
,
B.
Saxberg
,
C.
Owens
,
N.
Leung
,
Y.
Lu
,
J.
Simon
, and
D. I.
Schuster
, “
A dissipatively stabilized Mott insulator of photons
,”
Nature
566
,
51
57
(
2019
).
21.
W.
Ahn
,
J. F.
Triana
,
F.
Recabal
,
F.
Herrera
, and
B. S.
Simpkins
, “
Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities
,”
Science
380
,
1165
1168
(
2023
).
22.
V.
Sivak
,
A.
Eickbusch
,
B.
Royer
,
S.
Singh
,
I.
Tsioutsios
,
S.
Ganjam
,
A.
Miano
,
B.
Brock
,
A.
Ding
,
L.
Frunzio
et al, “
Real-time quantum error correction beyond break-even
,”
Nature
616
,
50
55
(
2023
).
23.
X.
Mi
et al, “
Stable quantum-correlated many-body states through engineered dissipation
,”
Science
383
,
1332
1337
(
2024
).
24.
J. O.
González
,
L. A.
Correa
,
G.
Nocerino
,
J. P.
Palao
,
D.
Alonso
, and
G.
Adesso
, “
Testing the validity of the ‘local’ and ‘global’ GKLS master equations on an exactly solvable model
,”
Open Syst. Inf. Dyn.
24
,
1740010
(
2017
).
25.
D.
Jaschke
,
L. D.
Carr
, and
I.
de Vega
, “
Thermalization in the quantum Ising model—Approximations, limits, and beyond
,”
Quantum Sci. Technol.
4
,
034002
(
2019
).
26.
P.
Werner
,
K.
Völker
,
M.
Troyer
, and
S.
Chakravarty
, “
Phase diagram and critical exponents of a dissipative Ising spin chain in a transverse magnetic field
,”
Phys. Rev. Lett.
94
,
047201
(
2005
).
27.
G.
Schehr
and
H.
Rieger
, “
Strong-disorder fixed point in the dissipative random transverse-field Ising model
,”
Phys. Rev. Lett.
96
,
227201
(
2006
).
28.
K.
Nakamura
and
Y.
Tanimura
, “
Open quantum dynamics theory for a complex subenvironment system with a quantum thermostat: Application to a spin heat bath
,”
J. Chem. Phys.
155
,
244109
(
2021
).
29.
R.
Dani
and
N.
Makri
, “
Quantum quench and coherent–incoherent dynamics of Ising chains interacting with dissipative baths
,”
J. Chem. Phys.
155
,
234705
(
2021
).
30.
N.
Makri
, “
Small matrix modular path integral: Iterative quantum dynamics in space and time
,”
Phys. Chem. Chem. Phys.
23
,
12537
12540
(
2021
).
31.
G.
De Filippis
,
A.
de Candia
,
A. S.
Mishchenko
,
L. M.
Cangemi
,
A.
Nocera
,
P. A.
Mishchenko
,
M.
Sassetti
,
R.
Fazio
,
N.
Nagaosa
, and
V.
Cataudella
, “
Quantum phase transition of many interacting spins coupled to a bosonic bath: Static and dynamical properties
,”
Phys. Rev. B
104
,
L060410
(
2021
).
32.
S.
Flannigan
,
F.
Damanet
, and
A. J.
Daley
, “
Many-body quantum state diffusion for non-Markovian dynamics in strongly interacting systems
,”
Phys. Rev. Lett.
128
,
063601
(
2022
).
33.
A.
Bose
and
P. L.
Walters
, “
A multisite decomposition of the tensor network path integrals
,”
J. Chem. Phys.
156
,
024101
(
2022
).
34.
M.
Weber
,
D. J.
Luitz
, and
F. F.
Assaad
, “
Dissipation-induced order: The S = 1/2 quantum spin chain coupled to an Ohmic bath
,”
Phys. Rev. Lett.
129
,
056402
(
2022
).
35.
G. E.
Fux
,
D.
Kilda
,
B. W.
Lovett
, and
J.
Keeling
, “
Tensor network simulation of chains of non-Markovian open quantum systems
,”
Phys. Rev. Res.
5
,
033078
(
2023
).
36.
G.
Wang
and
Z.
Cai
, “
Real-time simulation of open quantum spin chains with the inchworm method
,”
J. Chem. Theory Comput.
19
,
8523
8540
(
2023
).
37.
Y.
Ke
, “
Tree tensor network state approach for solving hierarchical equations of motion
,”
J. Chem. Phys.
158
,
211102
(
2023
).
38.
M.
Tsuchimoto
and
Y.
Tanimura
, “
Spins dynamics in a dissipative environment: Hierarchal equations of motion approach using a graphics processing unit (GPU)
,”
J. Chem. Theory Comput.
11
,
3859
3865
(
2015
).
39.
K.
Nakamura
and
Y.
Tanimura
, “
Hierarchical Schrödinger equations of motion for open quantum dynamics
,”
Phys. Rev. A
98
,
012109
(
2018
).
40.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
NJ
,
2012
).
41.
P.
Dutta
and
P. M.
Horn
, “
Low-frequency fluctuations in solids: 1/f noise
,”
Rev. Mod. Phys.
53
,
497
516
(
1981
).
42.
A. A.
Balandin
, “
Low-frequency 1/f noise in graphene devices
,”
Nat. Nanotechnol.
8
,
549
555
(
2013
).
43.
D. A.
Rower
,
L.
Ateshian
,
L. H.
Li
,
M.
Hays
,
D.
Bluvstein
,
L.
Ding
,
B.
Kannan
,
A.
Almanakly
,
J.
Braumüller
,
D. K.
Kim
,
A.
Melville
,
B. M.
Niedzielski
,
M. E.
Schwartz
,
J. L.
Yoder
,
T. P.
Orlando
,
J. I.-J.
Wang
,
S.
Gustavsson
,
J. A.
Grover
,
K.
Serniak
,
R.
Comin
, and
W. D.
Oliver
, “
Evolution of 1/f flux noise in superconducting qubits with weak magnetic fields
,”
Phys. Rev. Lett.
130
,
220602
(
2023
).
44.
E.
Paladino
,
Y. M.
Galperin
,
G.
Falci
, and
B. L.
Altshuler
, “
1/f noise: Implications for solid-state quantum information
,”
Rev. Mod. Phys.
86
,
361
418
(
2014
).
45.
C. M.
Quintana
,
Y.
Chen
,
D.
Sank
,
A. G.
Petukhov
,
T. C.
White
,
D.
Kafri
,
B.
Chiaro
,
A.
Megrant
,
R.
Barends
,
B.
Campbell
,
Z.
Chen
,
A.
Dunsworth
,
A. G.
Fowler
,
R.
Graff
,
E.
Jeffrey
,
J.
Kelly
,
E.
Lucero
,
J. Y.
Mutus
,
M.
Neeley
,
C.
Neill
,
P. J. J.
O’Malley
,
P.
Roushan
,
A.
Shabani
,
V. N.
Smelyanskiy
,
A.
Vainsencher
,
J.
Wenner
,
H.
Neven
, and
J. M.
Martinis
, “
Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence
,”
Phys. Rev. Lett.
118
,
057702
(
2017
).
46.
C.
Song
,
K.
Xu
,
W.
Liu
,
C.-p.
Yang
,
S.-B.
Zheng
,
H.
Deng
,
Q.
Xie
,
K.
Huang
,
Q.
Guo
,
L.
Zhang
,
P.
Zhang
,
D.
Xu
,
D.
Zheng
,
X.
Zhu
,
H.
Wang
,
Y.-A.
Chen
,
C.-Y.
Lu
,
S.
Han
, and
J.-W.
Pan
, “
10-qubit entanglement and parallel logic operations with a superconducting circuit
,”
Phys. Rev. Lett.
119
,
180511
(
2017
).
47.
C.
Song
,
K.
Xu
,
H.
Li
,
Y.-R.
Zhang
,
X.
Zhang
,
W.
Liu
,
Q.
Guo
,
Z.
Wang
,
W.
Ren
,
J.
Hao
et al, “
Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits
,”
Science
365
,
574
577
(
2019
).
48.
K.
Seetharam
,
A.
Lerose
,
R.
Fazio
, and
J.
Marino
, “
Correlation engineering via nonlocal dissipation
,”
Phys. Rev. Res.
4
,
013089
(
2022
).
49.
C. D.
Parmee
and
N. R.
Cooper
, “
Phases of driven two-level systems with nonlocal dissipation
,”
Phys. Rev. A
97
,
053616
(
2018
).
50.
C.
Lledó
,
T. K.
Mavrogordatos
, and
M. H.
Szymańska
, “
Driven Bose–Hubbard dimer under nonlocal dissipation: A bistable time crystal
,”
Phys. Rev. B
100
,
054303
(
2019
).
51.
R.
Schmidt
,
J. T.
Stockburger
, and
J.
Ankerhold
, “
Almost local generation of Einstein–Podolsky–Rosen entanglement in nonequilibrium open systems
,”
Phys. Rev. A
88
,
052321
(
2013
).
52.
M.
Xu
,
V.
Vadimov
,
M.
Krug
,
J.
Stockburger
, and
J.
Ankerhold
, “
A universal framework for quantum dissipation: Minimally extended state space and exact time-local dynamics
,” arXiv:2307.16790 (
2023
).
53.
V.
Vadimov
,
M.
Xu
,
J.
Stockburger
,
J.
Ankerhold
, and
M.
Möttönen
, “
Nonlinear response theory for lossy superconducting quantum circuits
,” arXiv:2310.15802 (
2023
).
54.
V.
Vadimov
,
J.
Tuorila
,
T.
Orell
,
J.
Stockburger
,
T.
Ala-Nissila
,
J.
Ankerhold
, and
M.
Möttönen
, “
Validity of Born–Markov master equations for single- and two-qubit systems
,”
Phys. Rev. B
103
,
214308
(
2021
).
55.
B. M.
Garraway
, “
The Dicke model in quantum optics: Dicke model revisited
,”
Philos. Trans. R. Soc., A
369
,
1137
1155
(
2011
).
56.
A.
Recati
,
P. O.
Fedichev
,
W.
Zwerger
,
J.
von Delft
, and
P.
Zoller
, “
Atomic quantum dots coupled to a reservoir of a superfluid Bose–Einstein condensate
,”
Phys. Rev. Lett.
94
,
040404
(
2005
).
57.
B.
Gadway
,
D.
Pertot
,
R.
Reimann
, and
D.
Schneble
, “
Superfluidity of interacting bosonic mixtures in optical lattices
,”
Phys. Rev. Lett.
105
,
045303
(
2010
).
58.
J. A.
Mlynek
,
A. A.
Abdumalikov
,
C.
Eichler
, and
A.
Wallraff
, “
Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate
,”
Nat. Commun.
5
,
5186
(
2014
).
59.
R.
Pandya
,
R. Y.
Chen
,
Q.
Gu
,
J.
Sung
,
C.
Schnedermann
,
O. S.
Ojambati
,
R.
Chikkaraddy
,
J.
Gorman
,
G.
Jacucci
,
O. D.
Onelli
et al, “
Microcavity-like exciton–polaritons can be the primary photoexcitation in bare organic semiconductors
,”
Nat. Commun.
12
,
6519
(
2021
).
60.
J. D.
Plumhof
,
T.
Stöferle
,
L.
Mai
,
U.
Scherf
, and
R. F.
Mahrt
, “
Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer
,”
Nat. Mater.
13
,
247
252
(
2014
).
61.
R. P.
Feynman
and
F. L.
Vernon
, “
The theory of a general quantum system interacting with a linear dissipative system
,”
Ann. Phys.
24
,
118
(
1963
).
62.
L.
Mühlbacher
,
J.
Ankerhold
, and
C.
Escher
, “
Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. I. Sequential hopping and super exchange
,”
J. Chem. Phys.
121
,
12696
12707
(
2004
).
63.
L.
Mühlbacher
,
J.
Ankerhold
, and
A.
Komnik
, “
Nonequilibrium dynamics of correlated electron transfer in molecular chains
,”
Phys. Rev. Lett.
95
,
220404
(
2005
).
64.
D.
Kast
and
J.
Ankerhold
, “
Persistence of coherent quantum dynamics at strong dissipation
,”
Phys. Rev. Lett.
110
,
010402
(
2013
).
65.
M.
Xu
,
Y.
Yan
,
Q.
Shi
,
J.
Ankerhold
, and
J. T.
Stockburger
, “
Taming quantum noise for efficient low temperature simulations of open quantum systems
,”
Phys. Rev. Lett.
129
,
230601
(
2022
).
66.
Z.-H.
Chen
,
Y.
Wang
,
X.
Zheng
,
R.-X.
Xu
, and
Y.
Yan
, “
Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations
,”
J. Chem. Phys.
156
,
221102
(
2022
).
67.
C.
Duan
,
Z.
Tang
,
J.
Cao
, and
J.
Wu
, “
Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion
,”
Phys. Rev. B
95
,
214308
(
2017
).
68.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
69.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
70.
P.
Pfeuty
, “
The one-dimensional Ising model with a transverse field
,”
Ann. Phys.
57
,
79
90
(
1970
).
71.
B. K.
Chakrabarti
,
A.
Dutta
, and
P.
Sen
,
Quantum Ising Phases and Transitions in Transverse Ising Models
(
Springer Science & Business Media
,
2008
), Vol.
41
.
72.
S.
Sachdev
,
Quantum Phase Transitions
, 2nd ed. (
Cambridge University Press
,
2011
).
73.
N. S.
Bingham
,
S.
Rooke
,
J.
Park
,
A.
Simon
,
W.
Zhu
,
X.
Zhang
,
J.
Batley
,
J. D.
Watts
,
C.
Leighton
,
K. A.
Dahmen
, and
P.
Schiffer
, “
Experimental realization of the 1D random field Ising model
,”
Phys. Rev. Lett.
127
,
207203
(
2021
).
74.
K.
Kim
,
S.
Korenblit
,
R.
Islam
,
E.
Edwards
,
M.
Chang
,
C.
Noh
,
H.
Carmichael
,
G.
Lin
,
L.
Duan
,
C. C.
Joseph Wang
et al, “
Quantum simulation of the transverse Ising model with trapped ions
,”
New J. Phys.
13
,
105003
(
2011
).
75.
T.
Graham
,
Y.
Song
,
J.
Scott
,
C.
Poole
,
L.
Phuttitarn
,
K.
Jooya
,
P.
Eichler
,
X.
Jiang
,
A.
Marra
,
B.
Grinkemeyer
et al, “
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
,”
Nature
604
,
457
462
(
2022
).
76.
Y.
Kim
,
A.
Eddins
,
S.
Anand
,
K. X.
Wei
,
E.
Van Den Berg
,
S.
Rosenblatt
,
H.
Nayfeh
,
Y.
Wu
,
M.
Zaletel
,
K.
Temme
, and
A.
Kandala
, “
Evidence for the utility of quantum computing before fault tolerance
,”
Nature
618
,
500
505
(
2023
).
77.
M. V.
Fistul
,
O.
Neyenhuys
,
A. B.
Bocaz
,
M.
Lisitskiy
, and
I. M.
Eremin
, “
Quantum dynamics of disordered arrays of interacting superconducting qubits: Signatures of quantum collective states
,”
Phys. Rev. B
105
,
104516
(
2022
).
78.
P. P.
Orth
,
I.
Stanic
, and
K.
Le Hur
, “
Dissipative quantum Ising model in a cold-atom spin-boson mixture
,”
Phys. Rev. A
77
,
051601
(
2008
).
79.
P. P.
Orth
,
D.
Roosen
,
W.
Hofstetter
, and
K.
Le Hur
, “
Dynamics, synchronization, and quantum phase transitions of two dissipative spins
,”
Phys. Rev. B
82
,
144423
(
2010
).
80.
L.
Henriet
and
K.
Le Hur
, “
Quantum sweeps, synchronization, and Kibble–Zurek physics in dissipative quantum spin systems
,”
Phys. Rev. B
93
,
064411
(
2016
).
81.
A.
Winter
and
H.
Rieger
, “
Quantum phase transition and correlations in the multi-spin-boson model
,”
Phys. Rev. B
90
,
224401
(
2014
).
82.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
, “
Quantum Brownian motion: The functional integral approach
,”
Phys. Rep.
168
,
115
207
(
1988
).
83.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
84.
C.
Lubich
,
I.
Oseledets
, and
B.
Vandereycken
, “
Time integration of tensor trains
,”
SIAM J. Numer. Anal.
53
,
917
941
(
2015
).
85.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
86.
A. P.
Babu
,
T.
Orell
,
V.
Vadimov
,
W.
Teixeira
,
M.
Möttönen
, and
M.
Silveri
, “
Quantum error correction under numerically exact open-quantum-system dynamics
,”
Phys. Rev. Res.
5
,
043161
(
2023
).
87.
J. R.
McClean
,
S.
Boixo
,
V. N.
Smelyanskiy
,
R.
Babbush
, and
H.
Neven
, “
Barren plateaus in quantum neural network training landscapes
,”
Nat. Commun.
9
,
4812
(
2018
).
88.
M. A.
Sillanpää
,
J. I.
Park
, and
R. W.
Simmonds
, “
Coherent quantum state storage and transfer between two phase qubits via a resonant cavity
,”
Nature
449
,
438
442
(
2007
).
89.
K.
Xu
,
J.-J.
Chen
,
Y.
Zeng
,
Y.-R.
Zhang
,
C.
Song
,
W.
Liu
,
Q.
Guo
,
P.
Zhang
,
D.
Xu
,
H.
Deng
,
K.
Huang
,
H.
Wang
,
X.
Zhu
,
D.
Zheng
, and
H.
Fan
, “
Emulating many-body localization with a superconducting quantum processor
,”
Phys. Rev. Lett.
120
,
050507
(
2018
).
90.
N. J.
Glaser
,
F.
Roy
, and
S.
Filipp
, “
Controlled-controlled-phase gates for superconducting qubits mediated by a shared tunable coupler
,”
Phys. Rev. Appl.
19
,
044001
(
2023
).
You do not currently have access to this content.