We introduce a Python package based on matrix product states (MPS) to simulate both the time-dependent Schrödinger equation (TDSE) and the hierarchical equations of motion (HEOM). The wave function in the TDSE or the reduced density operator/auxiliary density operators in the HEOM are represented using MPS. A matrix product operator (MPO) is then constructed to represent the Hamiltonian in the TDSE or the generalized Liouvillian in the HEOM. The fourth-order Runge–Kutta method and the time-dependent variational principle are used to propagate the MPS. Several examples, including the nonadiabatic interconversion dynamics of the pyrazine molecule, excitation energy transfer dynamics in molecular aggregates and photosynthetic light-harvesting complexes, the spin-boson model, a laser driven two-state model, the Holstein model, and charge transport in the Anderson impurity model, are presented to demonstrate the capability of the package.

1.
W. H.
Miller
, “
Quantum dynamics of complex molecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6660
6664
(
2005
).
2.
Quantum Dynamics of Complex Molecular Systems
, edited by
D. A.
Micha
and
I.
Burghardt
(
Springer
,
Berlin
,
2007
).
3.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley VCH
,
Weinheim
,
2011
).
4.
W.
Popp
,
D.
Brey
,
R.
Binder
, and
I.
Burghardt
, “
Quantum dynamics of exciton transport and dissociation in multichromophoric systems
,”
Annu. Rev. Phys. Chem.
72
,
591
616
(
2021
).
5.
R.
Improta
,
F.
Santoro
, and
L.
Blancafort
, “
Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases
,”
Chem. Rev.
116
,
3540
3593
(
2016
).
6.
S. R.
Reddy
,
P. B.
Coto
, and
M.
Thoss
, “
Intramolecular singlet fission: Insights from quantum dynamical simulations
,”
J. Phys. Chem. Lett.
9
,
5979
5986
(
2018
).
7.
F. A.
Schröder
,
D. H.
Turban
,
A. J.
Musser
,
N. D.
Hine
, and
A. W.
Chin
, “
Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
,”
Nat. Commun.
10
,
1062
(
2019
).
8.
S.
Zhang
,
Y.
Chen
, and
Q.
Shi
, “
Simulating the operation of a quantum computer in a dissipative environment
,”
J. Chem. Phys.
160
,
054101
(
2024
).
9.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
10.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
11.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
, “
Systematic convergence in the dynamical hybrid approach for complex systems: A numerically exact methodology
,”
J. Chem. Phys.
115
,
2979
(
2001
).
12.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
1299
(
2003
).
13.
U.
Manthe
, “
A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces
,”
J. Chem. Phys.
128
,
164116
(
2008
).
14.
H.
Wang
, “
Multilayer multiconfiguration time-dependent Hartree theory
,”
J. Phys. Chem. A
119
,
7951
7965
(
2015
).
15.
G.
Vidal
, “
Efficient simulation of one-dimensional quantum many-body systems
,”
Phys. Rev. Lett.
93
,
040502
(
2004
).
16.
F.
Verstraete
,
J. J.
García-Ripoll
, and
J. I.
Cirac
, “
Matrix product density operators: Simulation of finite-temperature and dissipative systems
,”
Phys. Rev. Lett.
93
,
207204
(
2004
).
17.
S. R.
White
and
A. E.
Feiguin
, “
Real-time evolution using the density matrix renormalization group
,”
Phys. Rev. Lett.
93
,
076401
(
2004
).
18.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
).
19.
R.
Orus
, “
A practical introduction to tensor networks: Matrix product states and projected entangled pair states
,”
Ann. Phys.
349
,
117
(
2014
).
20.
S.
Mardazad
,
Y.
Xu
,
X.
Yang
,
M.
Grundner
,
U.
Schollwöck
,
H.
Ma
, and
S.
Paeckel
, “
Quantum dynamics simulation of intramolecular singlet fission in covalently linked tetracene dimer
,”
J. Chem. Phys.
155
,
194101
(
2021
).
21.
J.
Peng
,
D.
Hu
,
H.
Liu
,
Q.
Shi
,
P.
Bao
, and
Z.
Lan
, “
Studies of nonadiabatic dynamics in the singlet fission processes of pentacene dimer via tensor network method
,”
J. Chem. Phys.
159
,
224301
(
2023
).
22.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings
,”
Nat. Commun.
12
,
4260
(
2021
).
23.
T.
Jiang
,
J.
Ren
, and
Z.
Shuai
, “
Unified definition of exciton coherence length for exciton–phonon coupled molecular aggregates
,”
J. Phys. Chem. Lett.
14
,
4541
4547
(
2023
).
24.
S.
Liu
,
J.
Peng
,
P.
Bao
,
Q.
Shi
, and
Z.
Lan
, “
Ultrafast excited-state energy transfer in phenylene ethynylene dendrimer: Quantum dynamics with the tensor network method
,”
J. Phys. Chem. A
128
,
6337
6350
(
2024
).
25.
N.
Makri
, “
Numerical path integral techniques for long time dynamics of quantum dissipative systems
,”
J. Math. Phys.
36
,
2430
(
1995
).
26.
S.
Kundu
and
N.
Makri
, “
Intramolecular vibrations in excitation energy transfer: Insights from real-time path integral calculations
,”
Annu. Rev. Phys. Chem.
73
,
349
375
(
2022
).
27.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
28.
Y.
Tanimura
, “
Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
29.
A.
Ishizaki
and
G. R.
Fleming
, “
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
(
2009
).
30.
J.
Strümpfer
and
K.
Schulten
, “
Light harvesting complex II B850 excitation dynamics
,”
J. Chem. Phys.
131
,
225101
(
2009
).
31.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
WIREs Comput. Mol. Sci.
11
,
e1498
(
2021
).
32.
Y.
Liu
,
Y.
Yan
,
T.
Xing
, and
Q.
Shi
, “
Understanding the large kinetic isotope effect of hydrogen tunneling in condensed phases by using double-well model systems
,”
J. Phys. Chem. B
125
,
5959
5970
(
2021
).
33.
L. P.
Lindoy
,
A.
Mandal
, and
D. R.
Reichman
, “
Quantum dynamical effects of vibrational strong coupling in chemical reactivity
,”
Nat. Commun.
14
,
2733
(
2023
).
34.
Z.
Li
,
N.
Tong
,
X.
Zheng
,
D.
Hou
,
J.
Wei
,
J.
Hu
, and
Y.
Yan
, “
Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems
,”
Phys. Rev. Lett.
109
,
266403
(
2012
).
35.
C.
Schinabeck
,
R.
Härtle
, and
M.
Thoss
, “
Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems: Reservoir formulation and application to vibrational instabilities
,”
Phys. Rev. B
97
,
235429
(
2018
).
36.
X.
Dan
,
M.
Xu
,
J.
Stockburger
,
J.
Ankerhold
, and
Q.
Shi
, “
Efficient low-temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model
,”
Phys. Rev. B
107
,
195429
(
2023
).
37.
C.
Lubich
,
I.
Oseledets
, and
B.
Vandereycken
, “
Time integration of tensor trains
,”
SIAM J. Numer. Anal.
53
,
917
941
(
2015
).
38.
S. M.
Greene
and
V. S.
Batista
, “
Tensor-train split-operator Fourier transform (TT-SOFT) method: Multidimensional nonadiabatic quantum dynamics
,”
J. Chem. Theory Comput.
13
,
4034
4042
(
2017
).
39.
J. J.
García-Ripoll
, “
Time evolution of matrix product states
,”
New J. Phys.
8
,
305
(
2006
).
40.
R.
Borrelli
and
M. F.
Gelin
, “
Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach
,”
J. Chem. Phys.
145
,
224101
(
2016
).
41.
R.
Borrelli
and
M. F.
Gelin
, “
Simulation of quantum dynamics of excitonic systems at finite temperature: An efficient method based on thermo field dynamics
,”
Sci. Rep.
7
,
9127
(
2017
).
42.
C.
Woywod
,
W.
Domcke
,
A. L.
Sobolewski
, and
H. J.
Werner
, “
Characterization of the S1–S2 conical intersection in pyrazine using abinitio multiconfiguration self-consistent-field and multireference configuration-interaction methods
,”
J. Chem. Phys.
100
,
1400
1413
(
1994
).
43.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
, “
Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian
,”
J. Chem. Phys.
110
,
936
(
1999
).
44.
D.
Ambrosek
,
A.
Kohn
,
J.
Schulze
, and
O.
Kuhn
, “
Quantum chemical parametrization and spectroscopic characterization of the Frenkel exciton Hamiltonian for a J-aggregate forming perylene bisimide dye
,”
J. Phys. Chem. A
116
,
11451
(
2012
).
45.
M.
Schröter
,
S.
Ivanov
,
J.
Schulze
,
S.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
46.
F.
Würthner
,
T. E.
Kaiser
, and
C. R.
Saha-Möller
, “
J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials
,”
Angew. Chem., Int. Ed.
50
,
3376
3410
(
2011
).
47.
A.
Baiardi
and
M.
Reiher
, “
Large-scale quantum dynamics with matrix product states
,”
J. Chem. Theory Comput.
15
,
3481
3498
(
2019
).
48.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
(
1987
).
49.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
NJ
,
2012
).
50.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
(
1990
).
51.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
52.
M.
Tanaka
and
Y.
Tanimura
, “
Quantum dissipative dynamics of electron transfer reaction system: Nonperturbative hierarchy equations approach
,”
J. Phys. Soc. Jpn.
78
,
073802
(
2009
).
53.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
, “
Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes
,”
J. Chem. Phys.
140
,
134106
(
2014
).
54.
M.
Xu
,
Y.
Yan
,
Q.
Shi
,
J.
Ankerhold
, and
J.
Stockburger
, “
Taming quantum noise for efficient low temperature simulations of open quantum systems
,”
Phys. Rev. Lett.
129
,
230601
(
2022
).
55.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
56.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
, “
Efficient propagation of the hierarchical equations of motion using the tucker and hierarchical tucker tensors
,”
J. Chem. Phys.
154
,
194104
(
2021
).
57.
T.
Holstein
, “
Studies of polaron motion: Part II. The small polaron
,”
Ann. Phys.
8
,
343
389
(
1959
).
58.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
59.
T.
Li
,
Y.
Yan
, and
Q.
Shi
, “
Is there a finite mobility for the one vibrational mode Holstein model? Implications from real time simulations
,”
J. Chem. Phys.
160
,
111102
(
2024
).
60.
M.
Tanaka
and
Y.
Tanimura
, “
Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach
,”
J. Chem. Phys.
132
,
214502
(
2010
).
61.
T.
Li
,
Y.
Yan
, and
Q.
Shi
, “
A low-temperature quantum Fokker–Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density
,”
J. Chem. Phys.
156
,
064107
(
2022
).
62.
L.-P.
Chen
,
R.-H.
Zheng
,
Y.-Y.
Jing
, and
Q.
Shi
, “
Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method
,”
J. Chem. Phys.
134
,
194508
(
2011
).
63.
C.
Kreisbeck
and
T.
Kramer
, “
Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes
,”
J. Phys. Chem. Lett.
3
,
2828
2833
(
2012
).
64.
Z.-H.
Chen
,
Y.
Wang
,
X.
Zheng
,
R.-X.
Xu
, and
Y.
Yan
, “
Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations
,”
J. Chem. Phys.
156
,
221102
(
2022
).
65.
H.
Takahashi
,
S.
Rudge
,
C.
Kaspar
,
M.
Thoss
, and
R.
Borrelli
, “
High accuracy exponential decomposition of bath correlation functions for arbitrary and structured spectral densities: Emerging methodologies and new approaches
,”
J. Chem. Phys.
160
,
204105
(
2024
).
66.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
, “
Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches
,”
J. Chem. Phys.
150
,
184109
(
2019
).
67.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
, “
A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes
,”
J. Chem. Phys.
153
,
214109
(
2020
).
68.
J.
Jin
,
X.
Zheng
, and
Y.
Yan
, “
Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach
,”
J. Chem. Phys.
128
,
234703
(
2008
).
69.
R.
Härtle
,
G.
Cohen
,
D. R.
Reichman
, and
A. J.
Millis
, “
Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach
,”
Phys. Rev. B
88
,
235426
(
2013
).
70.
X.
Dan
,
M.
Xu
,
Y.
Yan
, and
Q.
Shi
, “
Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion
,”
J. Chem. Phys.
156
,
134114
(
2022
).
71.
Y.
Ke
,
R.
Borrelli
, and
M.
Thoss
, “
Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space
,”
J. Chem. Phys.
156
,
194102
(
2022
).
72.
I. V.
Oseledets
, “
Tensor-train decomposition
,”
SIAM J. Sci. Comput.
33
,
2295
2317
(
2011
).
73.
E. M.
Stoudenmire
and
S. R.
White
, “
Minimally entangled typical thermal state algorithms
,”
New J. Phys.
12
,
055026
(
2010
).
74.
J.
Ren
,
W.
Li
,
T.
Jiang
, and
Z.
Shuai
, “
A general automatic method for optimal construction of matrix product operators using bipartite graph theory
,”
J. Chem. Phys.
153
,
084118
(
2020
).
75.
C.
Hubig
,
I.
McCulloch
, and
U.
Schollwöck
, “
Generic construction of efficient matrix product operators
,”
Phys. Rev. B
95
,
035129
(
2017
).
76.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
77.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
, “
Time-evolution methods for matrix-product states
,”
Ann. Phys.
411
,
167998
(
2019
).
78.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 4th ed. (
Johns Hopkins University Press
,
Philadelphia, PA
,
2013
).
79.
qiangshi-group, mpsqd, https://github.com/qiangshi-group/MPSQD (
2024
).
80.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes
,”
J. Chem. Phys.
152
,
024127
(
2020
).
81.
I.
Oseledets
,
TT-Toolbox
, https://github.com/oseledets/TT-Toolbox (
2014
).
82.
I.
Oseledets
,
ttpy
, https://github.com/oseledets/ttpy (
2015
).
83.
H.-D.
Meyer
, “
Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method
,”
WIREs Comput. Mol. Sci.
2
,
351
374
(
2012
).
84.
D. T.
Colbert
and
W. H.
Miller
, “
A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method
,”
J. Chem. Phys.
96
,
1982
1991
(
1992
).
85.
J.
Echave
and
D. C.
Clary
, “
Potential optimized discrete variable representation
,”
Chem. Phys. Lett.
190
,
225
230
(
1992
).
86.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
, “
Efficient hierarchical Liouville space propagator to quantum dissipative dynamics
,”
J. Chem. Phys.
130
,
084105
(
2009
).
87.
qiangshi-group
, “
HEOM for spin-bosom model based on the dynamic filtering approach
,” https://github.com/qiangshi-group/Heapsort-HEOM-program-for-Spin-Boson-model (
2024
).
88.
J.
Schulze
,
M. F.
Shibl
,
M. J.
Al-Marri
, and
O.
Kühn
, “
Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the fmo complex
,”
J. Chem. Phys.
144
,
185101
(
2016
).
89.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Finite-temperature TD-DMRG for the carrier mobility of organic semiconductors
,”
J. Phys. Chem. Lett.
11
,
4930
4936
(
2020
).
90.
M.
Wendling
,
T.
Pullerits
,
M.
Przyjalgowski
,
S.
Vulto
,
T.
Aartsma
,
R.
van Grondelle
, and
H.
van Amerongen
, “
Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements
,”
J. Phys. Chem. B
104
,
5825
5831
(
2000
).
91.
M. A.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2010
).
You do not currently have access to this content.