Injection of interstitial atoms by specially prepared surfaces submerged in liquid water near room temperature offers an attractive approach for post-synthesis defect manipulation and isotopic purification in device structures. However, this approach can be limited by trapping reactions that form small defect clusters. The compositions and dissociation barriers of such clusters remain mostly unknown. This communication seeks to address this gap by measuring the dissociation energies of oxygen interstitial traps in rutile TiO2 and wurtzite ZnO exposed to liquid water. Isotopic self-diffusion measurements using 18O, combined with progressive annealing protocols, suggest the traps are small interstitial clusters with dissociation energies ranging from 1.3 to 1.9 eV. These clusters may comprise a family incorporating various numbers, compositions, and configurations of O and H atoms; however, in TiO2, native interstitial clusters left over from initial synthesis may also play a role. Families of small clusters are probably common in semiconducting oxides and have several consequences for post-synthesis defect manipulation and purification of semiconductors using submerged surfaces.

1.
H.
Jeong
,
M.
Li
,
J.
Kuang
,
E.
Ertekin
, and
E. G.
Seebauer
, “
Mechanism of creation and destruction of oxygen interstitial atoms by nonpolar zinc oxide(1010) surfaces
,”
Phys. Chem. Chem. Phys.
23
,
16423
16435
(
2021
).
2.
H.
Jeong
,
E.
Ertekin
, and
E. G.
Seebauer
, “
Kinetic control of oxygen interstitial interaction with TiO2(110) via the surface Fermi energy
,”
Langmuir
36
(
42
),
12632
12648
(
2020
).
3.
H.
Jeong
,
E.
Ertekin
, and
E. G.
Seebauer
, “
Surface-based post-synthesis manipulation of point defects in metal oxides using liquid water
,”
ACS Appl. Mater. Interfaces
14
(
29
),
34059
34068
(
2022
).
4.
A.
Bikowski
,
T.
Welzel
, and
K.
Ellmer
, “
The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films
,”
Appl. Phys. Lett.
102
(
24
),
242106
(
2013
).
5.
K.
Ellmer
and
A.
Bikowski
, “
Intrinsic and extrinsic doping of ZnO and ZnO alloys
,”
J. Phys. D Appl. Phys.
49
(
41
),
413002
(
2016
).
6.
A.
Janotti
and
C. G.
Van de Walle
, “
Hydrogen multicentre bonds
,”
Nat. Mater.
6
(
1
),
44
47
(
2007
).
7.
H.
Li
and
J.
Robertson
, “
Behaviour of hydrogen in wide band gap oxides
,”
J. Appl. Phys.
115
(
20
),
203708
(
2014
).
8.
A.
Venzie
,
A.
Portoff
,
E. C. P.
Valenzuela
,
M.
Stavola
,
W. B.
Fowler
,
S. J.
Pearton
, and
E. R.
Glaser
, “
Impurity-hydrogen complexes in β-Ga2O3: Hydrogenation of shallow donors vs deep acceptors
,”
J. Appl. Phys.
131
(
3
),
035706
(
2022
).
9.
A. J.
Hupfer
,
E. V.
Monakhov
,
B. G.
Svensson
,
I.
Chaplygin
, and
E. V.
Lavrov
, “
Hydrogen motion in rutile TiO2
,”
Sci. Rep.
7
(
1
),
17065
(
2017
).
10.
M. D.
McCluskey
,
M. C.
Tarun
, and
S. T.
Teklemichael
, “
Hydrogen in oxide semiconductors
,”
J. Mater. Res.
27
(
17
),
2190
2198
(
2012
).
11.
T.
Sinno
,
E.
Dornberger
,
W.
von Ammon
,
R. A.
Brown
, and
F.
Dupret
, “
Defect engineering of Czochralski single-crystal silicon
,”
Mater. Sci. Eng.: R: Rep.
28
(
5-6
),
149
198
(
2000
).
12.
M.
Canino
,
G.
Regula
,
M.
Xu
,
E.
Ntzoenzok
, and
B.
Pichaud
, “
Defect engineering via ion implantation to control B diffusion in Si
,”
Mater. Sci. Eng.: B
159–160
,
338
341
(
2009
).
13.
H. L.
Tuller
and
S. R.
Bishop
, “
Point defects in oxides: Tailoring materials through defect engineering
,”
Annu. Rev. Mater. Res.
41
(
1
),
369
398
(
2011
).
14.
J. S.
Park
,
S.
Kim
,
Z.
Xie
, and
A.
Walsh
, “
Point defect engineering in thin-film solar cells
,”
Nat. Rev. Mater.
3
(
7
),
194
210
(
2018
).
15.
L.
Schmidt-Mende
and
J. L.
MacManus-Driscoll
, “
ZnO—Nanostructures, defects, and devices
,”
Mater. Today
10
(
5
),
40
48
(
2007
).
16.
H.
Jeong
and
E. G.
Seebauer
, “
Strong isotopic fractionation of oxygen in TiO2 obtained by surface-enhanced solid-state diffusion
,”
J. Phys. Chem. Lett.
13
,
9841
9847
(
2022
).
17.
J. K.
Cooper
,
S. B.
Scott
,
Y.
Ling
,
J.
Yang
,
S.
Hao
,
Y.
Li
,
F. M.
Toma
,
M.
Stutzmann
,
K. V.
Lakshmi
, and
I. D.
Sharp
, “
Role of hydrogen in defining the n-type character of BiVO4 photoanodes
,”
Chem. Mater.
28
(
16
),
5761
5771
(
2016
).
18.
A.
Lushchik
,
V. N.
Kuzovkov
,
E. A.
Kotomin
,
G.
Prieditis
,
V.
Seeman
,
E.
Shablonin
,
E.
Vasil’chenko
, and
A. I.
Popov
, “
Evidence for the formation of two types of oxygen interstitials in neutron-irradiated α-Al2O3 single crystals
,”
Sci. Rep.
11
(
1
),
20909
(
2021
).
19.
Y.
Knausgård Hommedal
,
M.
Etzelmüller Bathen
,
V.
Mari Reinertsen
,
K.
Magnus Johansen
,
L.
Vines
, and
Y.
Kalmann Frodason
, “
Theoretical modeling of defect diffusion in wide bandgap semiconductors
,”
J. Appl. Phys.
135
(
17
),
170902
(
2024
).
20.
N. E.
Grant
,
F. E.
Rougieux
, and
D.
Macdonald
, “
Low temperature activation of grown-in defects limiting the lifetime of high purity n-type float-zone silicon wafers
,” in
Solid State Phenomena
(
Trans Tech Publications
,
2016
), pp.
120
125
.
21.
N. E.
Grant
,
V. P.
Markevich
,
J.
Mullins
,
A. R.
Peaker
,
F.
Rougieux
, and
D.
Macdonald
, “
Thermal activation and deactivation of grown-in defects limiting the lifetime of float-zone silicon
,”
Phys. Status Solidi RRL
10
(
6
),
443
447
(
2016
).
22.
N. E.
Grant
,
V. P.
Markevich
,
J.
Mullins
,
A. R.
Peaker
,
F.
Rougieux
,
D.
Macdonald
, and
J. D.
Murphy
, “
Permanent annihilation of thermally activated defects which limit the lifetime of float-zone silicon
,”
Phys. Status Solidi A
213
(
11
),
2844
2849
(
2016
).
23.
J.
Mullins
,
V. P.
Markevich
,
M.
Vaqueiro-Contreras
,
N. E.
Grant
,
L.
Jensen
,
J.
Jabłoński
,
J. D.
Murphy
,
M. P.
Halsall
, and
A. R.
Peaker
, “
Thermally activated defects in float zone silicon: Effect of nitrogen on the introduction of deep level states
,”
J. Appl. Phys.
124
(
3
),
35701
(
2018
).
24.
D.
Hiller
,
V. P.
Markevich
,
J. A. T.
de Guzman
,
D.
König
,
S.
Prucnal
,
W.
Bock
,
J.
Julin
,
A. R.
Peaker
,
D.
Macdonald
,
N. E.
Grant
, and
J. D.
Murphy
, “
Kinetics of bulk lifetime degradation in float-zone silicon: Fast activation and annihilation of grown-in defects and the role of hydrogen versus light
,”
Phys. Status Solidi A
217
(
17
),
2000436
(
2020
).
25.
G.
Bromiley
,
N.
Hilaret
, and
C.
McCammon
, “
Solubility of hydrogen and ferric iron in rutile and TiO2 (II): Implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle
,”
Geophys. Res. Lett.
31
(
4
),
L04610
, (
2004
).
26.
Y. K.
Frodason
,
K. M.
Johansen
,
T. S.
Bjørheim
,
B. G.
Svensson
, and
A.
Alkauskas
, “
Zn vacancy-donor impurity complexes in ZnO
,”
Phys. Rev. B
97
(
10
),
104109
(
2018
).
27.
M. D.
McCluskey
, “
1—Defects in ZnO
,” in
Defects in Advanced Electronic Materials and Novel Low Dimensional Structures
, edited by
J.
Stehr
,
I.
Buyanova
, and
W.
Chen
(
Woodhead Publishing
,
2018
), pp.
1
25
.
28.
I.
Makkonen
,
E.
Korhonen
,
V.
Prozheeva
, and
F.
Tuomisto
, “
Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2
,”
J. Phys.: Condens. Matter
28
(
22
),
224002
(
2016
).
29.
E.
Korhonen
,
F.
Tuomisto
,
O.
Bierwagen
,
J. S.
Speck
, and
Z.
Galazka
, “
Compensating vacancy defects in Sn- and Mg-doped In2O3
,”
Phys. Rev. B
90
(
24
),
245307
(
2014
).
30.
S.
Kumar
,
S. B.
Rai
, and
C.
Rath
, “
Multifunctional role of dysprosium in HfO2: Stabilization of the high temperature cubic phase, and magnetic and photoluminescence properties
,”
Phys. Chem. Chem. Phys.
19
(
29
),
18957
18967
(
2017
).
31.
J. M.
Johnson
,
Z.
Chen
,
J. B.
Varley
,
C. M.
Jackson
,
E.
Farzana
,
Z.
Zhang
,
A. R.
Arehart
,
H. L.
Huang
,
A.
Genc
,
S. A.
Ringel
,
C. G.
Van De Walle
,
D. A.
Muller
, and
J.
Hwang
, “
Unusual Formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga2O3
,”
Phys Rev X
9
(
4
),
041027
(
2019
).
32.
M. E.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
, “
Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3
,”
APL Mater.
7
(
2
),
022510
(
2019
).
33.
Y. K.
Frodason
,
C.
Zimmermann
,
E. F.
Verhoeven
,
P. M.
Weiser
,
L.
Vines
, and
J. B.
Varley
, “
Multistability of isolated and hydrogenated Ga–O divacancies in β-Ga2O3
,”
Phys. Rev. Mater.
5
(
2
),
025402
(
2021
).
34.
J. M.
Flitcroft
,
M.
Molinari
,
N. A.
Brincat
,
N. R.
Williams
,
M. T.
Storr
,
G. C.
Allen
, and
S. C.
Parker
, “
The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide
,”
J. Mater. Chem. A
6
(
24
),
11362
11369
(
2018
).
35.
J.
Wang
,
R. C.
Ewing
, and
U.
Becker
, “
Average structure and local configuration of excess oxygen in UO2+x
,”
Sci. Rep.
4
(
1
),
4216
(
2014
).
36.
H.
Jeong
and
E. G.
Seebauer
, “
Effects of adventitious impurity adsorption on oxygen interstitial injection rates from submerged TiO2(110) and ZnO(0001) surfaces
,”
J. Vac. Sci. Technol., A
41
(
3
),
033203
(
2023
).
37.
H.
Jeong
and
E. G.
Seebauer
, “
Effects of ultraviolet illumination on oxygen interstitial injection from TiO2 under liquid water
,”
J. Phys. Chem. C
126
(
49
),
20800
20806
(
2022
).
38.
A. G.
Hollister
,
P.
Gorai
, and
E. G.
Seebauer
, “
Surface-based manipulation of point defects in rutile TiO2
,”
Appl. Phys. Lett.
102
(
23
),
231601
(
2013
).
39.
M.
Li
and
E. G.
Seebauer
, “
Surface-based control of oxygen interstitial injection into ZnO via submonolayer sulfur adsorption
,”
J. Phys. Chem. C
120
(
41
),
23675
23682
(
2016
).
40.
E. G.
Seebauer
,
K.
Dev
,
M. Y. L.
Jung
,
R.
Vaidyanathan
,
C. T. M.
Kwok
,
J. W.
Ager
,
E. E.
Haller
, and
R. D.
Braatz
, “
Control of defect concentrations within a semiconductor through adsorption
,”
Phys. Rev. Lett.
97
(
5
),
055503
(
2006
).
41.
S.
Vyazovkin
,
A. K.
Burnham
,
L.
Favergeon
,
N.
Koga
,
E.
Moukhina
,
L. A.
Pérez-Maqueda
, and
N.
Sbirrazzuoli
, “
ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics
,”
Thermochim. Acta
689
,
178597
(
2020
).
42.
E. G.
Seebauer
, “
Quantitative extraction of continuous distributions of energy states and pre-exponential factors from thermal desorption spectra
,”
Surf. Sci.
316
(
3
),
391
405
(
1994
).
43.
H.
Wittkopf
, “
Calculation of desorption energy distribution applied to temperature programmed H2O desorption from silicate glass surface: H Wittkopf, Vacuum 37, 1987, 819–823
,”
Vacuum
39
(
5
),
491
(
1989
).
44.
P. J.
Barrie
, “
Analysis of temperature programmed desorption (TPD) data for the characterisation of catalysts containing a distribution of adsorption sites
,”
Phys. Chem. Chem. Phys.
10
(
12
),
1688
(
2008
).
45.
G.
Carter
,
P.
Bailey
,
D. G.
Armour
, and
R.
Collins
, “
The deduction of continuously distributed activation energy site populations from tempering schedules
,”
Vacuum
32
(
5
),
233
241
(
1982
).
46.
N. E. B.
Cowern
,
G.
Mannino
,
P. A.
Stolk
,
F.
Roozeboom
,
H. G. A.
Huizing
,
J. G. M.
van Berkum
,
F.
Cristiano
,
A.
Claverie
, and
M.
Jaraíz
, “
Cluster ripening and transient enhanced diffusion in silicon
,”
Mater. Sci. Semicond. Process.
2
(
4
),
369
376
(
1999
).
47.
L.
Pelaz
,
M.
Jaraiz
,
G. H.
Gilmer
,
H.-J.
Gossmann
,
C. S.
Rafferty
,
D. J.
Eaglesham
, and
J. M.
Poate
, “
B diffusion and clustering in ion implanted Si: The role of B cluster precursors
,”
Appl. Phys. Lett.
70
(
17
),
2285
2287
(
1997
).
48.
M. Y. L.
Jung
,
R.
Gunawan
,
R. D.
Braatz
, and
E. G.
Seebauer
, “
A simplified picture for transient enhanced diffusion of boron in silicon
,”
J. Electrochem. Soc.
151
(
1
),
G1
(
2003
).
49.
J.
Schermer
,
A.
Martinez-Limia
,
P.
Pichler
,
C.
Zechner
,
W.
Lerch
, and
S.
Paul
, “
On a computationally efficient approach to boron-interstitial clustering
,”
Solid-State Electron.
52
(
9
),
1424
1429
(
2008
).
50.
K. L.
Gilliard-AbdulAziz
and
E. G.
Seebauer
, “
Microkinetic model for reaction and diffusion of titanium interstitial atoms near a TiO2(110) surface
,”
Phys. Chem. Chem. Phys.
20
(
6
),
4587
4596
(
2018
).
51.
A.
Janotti
and
C. G.
Van de Walle
, “
Fundamentals of zinc oxide as a semiconductor
,”
Rep. Prog. Phys.
72
(
12
),
126501
(
2009
).
52.
K. L.
Gilliard
and
E. G.
Seebauer
, “
Manipulation of native point defect behavior in rutile TiO2 via surfaces and extended defects
,”
J. Phys.: Condens. Matter
29
(
44
),
445002
(
2017
).
53.
X.
Li
,
M. W.
Finnis
,
J.
He
,
R. K.
Behera
,
S. R.
Phillpot
,
S. B.
Sinnott
, and
E. C.
Dickey
, “
Energetics of charged point defects in rutile TiO2 by density functional theory
,”
Acta Mater.
57
(
19
),
5882
5891
(
2009
).
54.
H.
Peng
, “
First-principles study of native defects in rutile TiO2
,”
Phys. Lett. A
372
(
9
),
1527
1530
(
2008
).
55.
D. Y.
Yong
,
H. Y.
He
,
Z. K.
Tang
,
S.-H.
Wei
, and
B. C.
Pan
, “
H-stabilized shallow acceptors in N-doped ZnO
,”
Phys. Rev. B
92
(
23
),
235207
(
2015
).
56.
C. P.
Herrero
,
M.
Stutzmann
, and
A.
Breitschwerdt
, “
Boron-hydrogen complexes in crystalline silicon
,”
Phys. Rev. B
43
(
2
),
1555
1575
(
1991
).
57.
J. A. T.
De Guzman
,
V. P.
Markevich
,
J.
Coutinho
,
N. V.
Abrosimov
,
M. P.
Halsall
, and
A. R.
Peaker
, “
Electronic properties and structure of Boron–hydrogen complexes in crystalline silicon
,”
Sol. RRL
6
(
5
),
2100459
(
2022
).
58.
M.
Budde
,
B.
Bech Nielsen
,
P.
Leary
,
J.
Goss
,
R.
Jones
,
P. R.
Briddon
,
S.
Öberg
, and
S. J.
Breuer
, “
Identification of the hydrogen-saturated self-interstitials in silicon and germanium
,”
Phys. Rev. B
57
(
8
),
4397
4412
(
1998
).
59.
B.
Hourahine
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
, “
Self-interstitial–hydrogen complexes in silicon
,”
Phys. Rev. B
59
(
24
),
15729
15732
(
1999
).
60.
A.
Kiyoi
,
N.
Kawabata
,
K.
Nakamura
, and
Y.
Fujiwara
, “
Influence of oxygen on trap-limited diffusion of hydrogen in proton-irradiated n -type silicon for power devices
,”
J. Appl. Phys.
129
(
2
),
025701
(
2021
).
61.
O. W.
Johnson
,
S. −H.
Paek
, and
J. W.
DeFord
, “
Diffusion of H and D in TiO2: Suppression of internal fields by isotope exchange
,”
J. Appl. Phys.
46
(
3
),
1026
1033
(
1975
).
62.
M. A.
Motin
,
P. C.
Roy
, and
C. M.
Kim
, “
The effect of the crystallographic orientation of ZnO on the surface adsorption and bulk diffusion of hydrogen
,”
Phys. Status Solidi B
253
(
8
),
1649
1652
(
2016
).
63.
L.-B.
Mo
,
Y.
Wang
,
Y.
Bai
,
Q.-Y.
Xiang
,
Q.
Li
,
W.-Q.
Yao
,
J.-O.
Wang
,
K.
Ibrahim
,
H.-H.
Wang
,
C.-H.
Wan
, and
J.-L.
Cao
, “
Hydrogen impurity defects in rutile TiO2
,”
Sci. Rep.
5
(
1
),
17634
(
2015
).
64.
T. S.
Bjørheim
,
S.
Stølen
, and
T.
Norby
, “
Ab initio studies of hydrogen and acceptor defects in rutile TiO2
,”
Phys. Chem. Chem. Phys.
12
(
25
),
6817
6825
(
2010
).
65.
E. V.
Lavrov
,
T.
Mchedlidze
, and
F.
Herklotz
, “
Photoconductive detection of hydrogen in ZnO and rutile TiO2
,”
J. Appl. Phys.
120
(
5
),
055703
(
2016
).
66.
J.
Weber
,
E. V.
Lavrov
, and
F.
Herklotz
, “
Hydrogen shallow donors in ZnO and rutile TiO2
,”
Physica B
407
(
10
),
1456
1461
(
2012
).
67.
S. G.
Koch
,
E. V.
Lavrov
, and
J.
Weber
, “
Towards understanding the hydrogen molecule in ZnO
,”
Phys. Rev. B
90
(
20
),
205212
(
2014
).
68.
E. V.
Lavrov
,
I.
Chaplygin
,
F.
Herklotz
,
V. V.
Melnikov
, and
Y.
Kutin
, “
Hydrogen in single-crystalline anatase TiO2
,”
J. Appl. Phys.
131
(
3
),
030902
(
2022
).
69.
E. V.
Lavrov
,
I.
Chaplygin
,
F.
Herklotz
, and
V. V.
Melnikov
, “
Hydrogen donors in anatase TiO2
,”
Phys. Status Solidi B
258
(
8
),
2100171
(
2021
).
70.
Y.
Yang
,
L.-C.
Yin
,
Y.
Gong
,
P.
Niu
,
J.-Q.
Wang
,
L.
Gu
,
X.
Chen
,
G.
Liu
,
L.
Wang
, and
H.-M.
Cheng
, “
An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies
,”
Adv. Mater.
30
(
6
),
1704479
(
2018
).
You do not currently have access to this content.