Chiral structures, breaking spatial inversion symmetry, exhibit non-zero chiroptical activity (COA) due to the coupling between their electric and magnetic responses under external electromagnetic fields, an effect absent in achiral systems. Non-magnetic chiral structures also exhibit Chiral-Induced Spin Selectivity (CISS), primarily detected in two terminal measurements in the linear regime, where spin selection emerges without external magnetic influence. Despite the different origins of these physical phenomena, our model captures the relevant physics required to address CISS as an intrinsic molecular effect with the basic ingredients: (i) chirality/inversion asymmetry, (ii) meV atomic spin–orbit coupling, and (iii) decoherence as a source of reciprocity breaking. In this work, we derived how the electronic system couples with polarized electromagnetic radiation to yield a spin-dependent polarization rotation power, quantified through the Rosenfeld tensor, predicting characteristic spin signatures in the COA. The model also predicts that a net spin polarization manifests in the molecular terminations that have been surmised as an explanation for chiral species separation of racemic mixtures and interactions with surface magnetic domains. A recent sensitive spectroscopic measurement of electron transfer in donor–acceptor complexes is consistent with the standalone CISS effect.

1.
C. D.
Aiello
,
J. M.
Abendroth
,
M.
Abbas
et al,
ACS Nano
16
,
4989
(
2022
).
2.
Z. H.
Xiong
,
D.
Wu
,
V. V.
Vardeny
, and
J.
Shi
,
Nature
427
,
821
(
2004
).
3.
D.
Sun
,
M.
Fang
,
X.
Xu
et al,
Nat. Commun.
5
,
4396
(
2014
).
4.
O.
Dor
,
S.
Yochelis
,
S.
Mathew
et al,
Nat. Commun.
4
,
2256
(
2013
).
5.
H.
Al-Bustami
,
B. P.
Bloom
,
A.
Ziv
et al,
Nano Lett.
20
,
8675
(
2020
).
6.
H.
Al-Bustami
,
S.
Khaldi
,
O.
Shoseyov
et al,
Nano Lett.
22
,
5022
(
2022
).
7.
O.
Ben Dor
,
S.
Yochelis
,
A.
Radko
et al,
Nat. Commun.
8
,
14567
(
2017
).
8.
P.
Shinto
,
M.
Prakash
,
M.
Hagay
et al,
Appl. Phys. Lett.
105
,
242408
(
2014
).
9.
V.
Varade
,
T.
Markus
,
V.
Kiran
et al,
Phys. Chem. Chem. Phys.
20
,
1091
(
2018
).
10.
A.
Chiesa
,
A.
Privitera
,
E.
Macaluso
et al,
Adv. Mater.
35
,
2300472
(
2023
).
11.
J.
Santos
,
I.
Rivilla
,
F.
Cossío
et al,
ACS Nano
12
,
11426
(
2018
).
12.
F.
Evers
,
A.
Aharony
,
N.
Bar-Gill
et al,
Adv. Mater.
34
,
2106629
(
2022
).
13.
S.
Yeganeh
,
M. A.
Ratner
,
E.
Medina
, and
V.
Mujica
,
J. Chem. Phys.
131
,
014707
(
2009
).
14.
E.
Medina
,
L.
González-Arraga
,
D.
Finkelstein-Shapiro
,
B.
Berche
, and
V.
Mujica
,
J. Chem. Phys.
142
,
194308
(
2015
).
15.
R.
Gutierrez
,
E.
Díaz
,
C.
Gaul
,
T.
Brumme
,
F.
Domínguez-Adame
, and
G.
Cuniberti
,
J. Phys. Chem. C
117
,
22276
(
2013
).
16.
A.-M.
Guo
and
Q.-f.
Sun
,
Phys. Rev. Lett.
108
,
218102
(
2012
).
17.
S.
Matityahu
,
Y.
Utsumi
,
A.
Aharony
,
O.
Entin-Wohlman
, and
C. A.
Balseiro
,
Phys. Rev. B
93
,
075407
(
2016
).
18.
S.
Varela
,
M.
Peralta
,
V.
Mujica
et al,
SciPost Phys. Core
6
,
044
(
2023
).
19.
W.
Dednam
,
M. A.
García-Blázquez
,
L. A.
Zotti
,
E. B.
Lombardi
,
C.
Sabater
,
S.
Pakdel
, and
J. J.
Palacios
,
ACS Nano
17
,
6452
(
2023
).
20.
X.
Yang
,
C. H.
van der Wal
, and
B. J.
van Wees
,
Phys. Rev. B
99
,
024418
(
2019
).
21.
X.
Yang
,
C. H.
van der Wal
, and
B. J.
van Wees
,
Nano Lett.
20
,
6148
(
2020
).
22.
S.
Mayer
,
C.
Nolting
, and
J.
Kessler
,
J. Phys. B: At., Mol. Opt. Phys.
29
,
3497
(
1996
).
23.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
24.
Y.
Wu
,
G.
Miao
, and
J. E.
Subotnik
,
J. Phys. Chem. A
124
,
7355
(
2020
).
25.
D.
Klein
and
K.
Michaeli
,
Phys. Rev. B
107
,
045404
(
2023
).
28.
D.
Nozaki
,
C.
Gomes da Rocha
,
H. M.
Pastawski
, and
G.
Cuniberti
,
Phys. Rev. B
85
,
155327
(
2012
).
29.
J.
Fransson
,
J. Phys. Chem. Lett.
14
,
2558
(
2023
).
30.
Y.
Wu
and
J. E.
Subotnik
,
Nat. Commun.
12
,
700
(
2021
).
31.
A.
Volosniev
,
H.
Alpern
,
Y.
Paltiel
et al,
Phys. Rev. B
104
,
024430
(
2021
).
32.
M.
Peralta
,
S.
Feijoo
,
S.
Varela
et al,
J. Chem. Phys.
153
,
165102
(
2020
).
33.
M.
Peralta
,
S.
Feijoo
,
S.
Varela
et al,
J. Chem. Phys.
159
,
024711
(
2023
).
34.
J.
Fransson
,
J. Phys. Chem. Lett.
10
,
7126
(
2019
).
35.
K. H.
Huisman
,
J. B. M. Y.
Heinisch
, and
J. M.
Thijssen
,
J. Chem. Phys.
158
,
174108
(
2023
).
36.
A. C.
Aragonès
,
D.
Aravena
,
J. M.
Ugalde
et al,
Isr. J. Chem.
62
,
e202200090
(
2022
).
37.
Y.
Adhikari
,
T.
Liu
,
H.
Wang
et al,
Nat. Commun.
14
,
5163
(
2023
).
39.
H.
Eckvahl
,
N.
Tcyrulnikov
,
A.
Chiesa
et al,
Science
392
,
6667
(
2023
).
40.
S.
Alwan
,
A.
Sharoni
, and
Y.
Dubi
,
J. Phys. Chem. C
128
,
6438
(
2024
).
41.
K.
Ray
,
P.
Ananthavel
,
D. H.
Waldeck
, and
R.
Naaman
,
Science
283
,
814
(
1999
).
42.
R.
Naaman
and
Z.
Vager
,
MRS Bull.
35
,
429
(
2010
).
43.
J.
Abendroth
,
K.
Cheung
,
D. M.
Stemer
et al,
J. Am. Chem. Soc.
141
,
3863
(
2019
).
44.
M.
Kettner
,
B.
Göhler
,
H.
Zacharias
et al,
J. Phys. Chem. C
119
,
14542
(
2015
).
45.
Z.
Xie
,
Z.
Markus
,
S. R.
Cohen
et al,
Nano Lett.
11
,
4652
(
2011
).
46.
C.
Nogues
,
S. R.
Cohen
,
S. S.
Daube
, and
R.
Naaman
,
Phys. Chem. Chem. Phys.
6
,
4459
(
2004
).
47.
V.
Kiran
,
P.
Shinto
,
R.
Sidney
et al,
Adv. Mater.
28
,
1957
(
2016
).
48.
I.
Malajovich
,
J. M.
Kikkawa
,
D. D.
Awschalom
,
J. J.
Berry
, and
N.
Samarth
,
Phys. Rev. Lett.
84
,
1015
(
2000
).
49.
M.
Ouyang
and
D. D.
Awschalom
,
Science
301
,
1074
(
2003
).
50.
J. J.
Wei
,
C.
Schafmeister
,
G.
Bird
,
A.
Paul
,
R.
Naaman
, and
D. H.
Waldeck
,
J. Phys. Chem. B
110
,
1301
(
2006
).
51.
D.
Mishra
,
T. Z.
Markus
,
R.
Naaman
,
M.
Kettner
et al,
Proc. Natl. Acad. Sci. U. S. A.
110
,
14872
(
2013
).
52.
P. C.
Mondal
,
C.
Fontanesi
,
D. H.
Waldeck
, and
R.
Naaman
,
ACS Nano
9
,
3377
(
2015
).
53.
B.
Bloom
,
B.
Graff
,
S.
Ghosh
,
D.
Beratan
, and
D.
Waldeck
,
J. Am. Chem. Soc.
139
,
9038
(
2017
).
54.
K. B.
Ghosh
,
W.
Zhang
,
F.
Tassinari
et al,
J. Phys. Chem. C
123
,
3024
(
2019
).
55.
T. J.
Zwang
,
E. C.
Tse
,
D.
Zhong
, and
J. K.
Barton
,
ACS Cent. Sci.
4
,
405
(
2018
).
56.
R.
Torres-Cavanillas
,
G.
Escorcia-Ariza
,
I.
Brotons-Alcázar
et al,
J. Am. Chem. Soc.
142
,
17572
(
2020
).
57.
A.
Ortuño
et al,
Org. Chem. Front.
8
,
5071
(
2021
).
58.
T.
Metzger
,
H.
Batchu
,
A.
Kumar
,
D.
Fedotov
,
N.
Goren
,
D.
Bhowmick
,
I.
Shioukhi
,
S.
Yochelis
,
I.
Schapiro
,
R.
Naaman
,
O.
Gidron
, and
Y.
Paltiel
,
J. Am. Chem. Soc.
145
,
3972
(
2023
).
59.
Q.
Qian
,
H.
Ren
,
J.
Zhou
et al,
Nature
606
,
902
(
2022
).
60.
A.
García-Etxarri
,
J.
Ugalde
,
J.
Sáenz
, and
V.
Mujica
,
J. Phys. Chem. C
124
,
1560
(
2020
).
61.
T. K.
Das
,
F.
Tassinari
,
R.
Naaman
, and
J.
Fransson
,
J. Phys. Chem. C
126
,
3257
(
2022
).
62.
K.
Banerjee-Ghosh
,
O.
Ben Dor
,
F.
Tassinari
,
E.
Capua
,
S.
Yochelis
,
A.
Capua
,
S. H.
Yang
,
S. S. P.
Parkin
,
S.
Sarkar
,
L.
Kronik
,
L. T.
Baczewski
,
R.
Naaman
,
Y.
Paltiel
, and
R.
Naaman
,
Science
360
,
1331
(
2018
).
63.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
,
Acc. Chem. Res.
53
,
2659
(
2020
).
64.
I.
Tinoco
, Jr.
and
R.
Woody
,
J. Chem. Phys.
40
,
160
(
1964
).
65.
S.
Varela
,
V.
Mujica
, and
E.
Medina
,
Phys. Rev. B
93
,
155436
(
2016
).
66.
J.
Torres
,
R.
Hidalgo-Sacoto
,
S.
Varela
, and
E.
Medina
,
Phys. Rev. B
102
,
035426
(
2020
).
67.
Y.
Utsumi
,
O.
Entin-Wohlman
, and
A.
Aharony
,
Phys. Rev. B
102
,
035445
(
2020
).
68.
P.
Jacquod
,
R.
Whitney
,
J.
Meair
, and
M.
Büttiker
,
Phys. Rev. B
86
,
155118
(
2012
).
69.
J. L.
D’Amato
and
H. M.
Pastawski
,
Phys. Rev. B
41
,
7411
(
1990
).
70.
H.
Pastawski
and
E.
Medina
,
Rev. Mex. Fis.
47
(
S1
),
1
23
(
2001
).
71.
C. J.
Cattena
,
R. A.
Bustos-Marún
, and
H. M.
Pastawski
,
Phys. Rev. B
82
,
144201
(
2010
).
72.
A. F.
Kemper
,
O.
Abdurazakov
, and
J. K.
Freericks
,
Phys. Rev. X
8
,
041009
(
2018
).
74.
X.
Bian
,
Y.
Wu
,
H.-H.
Teh
,
Z.
Zhou
,
H.-T.
Chen
, and
J. E.
Subotnik
,
J. Chem. Phys.
154
,
110901
(
2021
).
75.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
76.
J.
Kessler
,
Polarized Electrons
(
Springer-Verlag
,
Berlin, Heidelberg
,
1976 and 1985
).
77.
R. E.
Goetz
,
C. P.
Koch
, and
L.
Greenman
,
Phys. Rev. Lett.
122
,
013204
(
2019
).
78.
K. H.
Huisman
and
J. M.
Thijssen
,
J. Phys. Chem. C
125
,
23364
(
2021
).
79.
L. E. F.
Foa Torres
,
H. M.
Pastawski
, and
E.
Medina
,
Europhys. Lett.
73
,
164
(
2006
).
80.
M.
Ellner
,
N.
Bolívar
,
B.
Berche
, and
E.
Medina
,
Phys. Rev. B
90
,
085305
(
2014
).
81.
Z.
Wu
,
A.
Ono
,
M.
Kainosho
, and
A.
Bax
,
J. Biomol. NMR
,
19
,
361
365
(
2001
).
82.
J. H.
Bardarson
,
J. Phys. A: Math. Theor.
41
,
405203
(
2008
).
83.
N.
Berova
,
K.
Nakanishi
, and
R. W.
Woody
,
Circular Dichroism: Principles and Applications
(
Wiley VCH
,
2020
).
84.
D.
Amsallem
,
A.
Kumar
,
R.
Naaman
, and
O.
Gidron
,
Chirality
35
,
562
(
2023
).
85.
T. P.
Fay
,
J. Phys. Chem. Lett.
12
,
1407
(
2021
).
86.
K.
Blum
and
D.
Thompson
,
J. Phys. B: At., Mol. Opt. Phys.
22
,
1823
(
1989
).
You do not currently have access to this content.