The density-fitted equation-of-motion (EOM) orbital-optimized second-order perturbation theory (DF-EOM-OMP2) method is presented for the first time. In addition, κ-DF-EOM-MP2 and κ-DF-EOM-OMP2 methods are implemented with the addition of κ-regularization. The accuracy of the DF-EOM-OMP2, κ-DF-EOM-MP2, and κ-DF-EOM-OMP2 methods are compared to the density-fitted EOM-MP2 (DF-EOM-MP2), EOM coupled-cluster (CC) singles and doubles (DF-EOM-CCSD), and EOM-CCSD with the triples excitation correction model [EOM-CCSD(fT)] for excitation energies of many closed- and open-shell chemical systems. The excitation energies computed using different test cases and methods were compared to the EOM-CCSD(fT) method and mean absolute errors (MAEs) are presented. The MAE values of closed- and open-shell cases (closed-shell organic chromophores set, open-shell set, peptide radicals set, and radical set) according to the EOM-CCSD(fT) method show that the κ-regularization technique yields highly accurate results for the first excited states. Our results indicate that the κ-DF-EOM-MP2 and κ-DF-EOM-OMP2 methods perform noticeably better than the DF-EOM-MP2 and DF-EOM-OMP2 methods. They approach the EOM-CCSD quality, at a significantly reduced cost, for the computation of excitation energies. Especially, the κ-DF-EOM-MP2 method provides outstanding results for most test cases considered. Overall, we conclude that the κ-versions of DF-EOM-MP2 and DF-EOM-OMP2 emerge as a useful computational tool for the study of excited-state molecular properties.

1.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
2.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
3.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
4.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
5.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
6.
U.
Bozkaya
,
Phys. Chem. Chem. Phys.
18
,
11362
(
2016
).
7.
C.
Kollmar
and
A.
Heßelmann
,
Theor. Chem. Acc.
127
,
311
(
2010
).
8.
C.
Kollmar
and
F.
Neese
,
J. Chem. Phys.
135
,
084102
(
2011
).
9.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
10.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
11.
Y.
Alagöz
,
A.
Ünal
, and
U.
Bozkaya
,
J. Chem. Phys.
155
,
114104
(
2021
).
12.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
13.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
14.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
15.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
16.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
17.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
18.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
19.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
20.
W.
Kurlancheek
,
R.
Lochan
,
K.
Lawler
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
21.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
22.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2371
(
2014
).
23.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
4389
(
2014
).
24.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
14
,
5203
(
2018
).
25.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Phys.
150
,
244106
(
2019
).
26.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
27.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
28.
U.
Bozkaya
,
J. Chem. Theory Comput.
12
,
1179
(
2016
).
29.
U.
Bozkaya
,
J. Comput. Chem.
39
,
351
(
2018
).
30.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
10
,
4170
(
2019
).
31.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
141
,
204105
(
2014
).
32.
A. Y.
Sokolov
and
H. F.
Schaefer
,
J. Chem. Phys.
139
,
204110
(
2013
).
33.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
34.
E.
Soydaş
and
U.
Bozkaya
,
J. Comput. Chem.
35
,
1073
(
2014
).
35.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
11
,
1564
(
2015
).
36.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Theory Comput.
8
,
2653
(
2012
).
37.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
38.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
4679
(
2013
).
39.
U.
Bozkaya
,
J. Chem. Phys.
139
,
154105
(
2013
).
40.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2041
(
2014
).
41.
D.
Yildiz
and
U.
Bozkaya
,
J. Comput. Chem.
37
,
345
(
2016
).
42.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
43.
J. D.
Watts
and
R. J.
Bartlett
,
Chem. Phys. Lett.
233
,
81
(
1995
).
44.
S. R.
Gwaltney
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
248
,
189
(
1996
).
45.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
46.
K. W.
Sattelmeyer
,
J. F.
Stanton
,
J.
Olsen
, and
J.
Gauss
,
Chem. Phys. Lett.
347
,
499
(
2001
).
47.
H.
Larsen
,
K.
Hald
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
115
,
3015
(
2001
).
48.
S.
Hirata
,
J. Chem. Phys.
121
,
51
(
2004
).
49.
C. E.
Smith
,
R. A.
King
, and
T. D.
Crawford
,
J. Chem. Phys.
122
,
054110
(
2005
).
50.
J. R.
Gour
,
P.
Piecuch
, and
M.
Włoch
,
J. Chem. Phys.
123
,
134113
(
2005
).
51.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
123
,
084107
(
2005
).
52.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
127
,
024106
(
2007
).
54.
M.
Musial
and
R. J.
Bartlett
,
J. Chem. Phys.
129
,
134105
(
2008
).
55.
T.
Kuś
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
J. Chem. Phys.
130
,
124122
(
2009
).
57.
K.
Sneskov
and
O.
Christiansen
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
566
(
2011
).
58.
R. J.
Bartlett
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
126
(
2011
).
59.
M.
Musiał
,
M.
Olszówka
,
D. I.
Lyakh
, and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
174102
(
2012
).
60.
D. A.
Matthews
and
J. F.
Stanton
,
J. Chem. Phys.
145
,
124102
(
2016
).
61.
E.
Epifanovsky
,
D.
Zuev
,
X.
Feng
,
K.
Khistyaev
,
Y.
Shao
, and
A. I.
Krylov
,
J. Chem. Phys.
139
,
134105
(
2013
).
62.
A.
Ünal
and
U.
Bozkaya
,
J. Chem. Theory Comput.
18
,
1489
(
2022
).
63.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
64.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
65.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
66.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
67.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
68.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
69.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
70.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
71.
A. E.
DePrince
and
C. D.
Sherrill
,
J. Chem. Theory Comput.
9
,
2687
(
2013
).
72.
U.
Bozkaya
,
J. Chem. Phys.
141
,
124108
(
2014
).
73.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
144
,
174103
(
2016
).
74.
U.
Bozkaya
,
J. Chem. Phys.
144
,
144108
(
2016
).
75.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
044104
(
2017
).
76.
U.
Bozkaya
,
A.
Ünal
, and
Y.
Alagöz
,
J. Chem. Phys.
153
,
244115
(
2020
).
77.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
,
683
(
1977
).
78.
I.
Roeggen
and
E.
Wisloff-Nilssen
,
Chem. Phys. Lett.
132
,
154
(
1986
).
79.
H.
Koch
,
A. S.
de Meras
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
80.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
81.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
82.
D.
Kumar
,
A. K.
Dutta
, and
P. U.
Manohar
,
J. Chem. Sci
129
,
1611
(
2017
).
83.
D.
Hait
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
14
,
1969
(
2018
).
84.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
85.
B.
Temelso
,
C. D.
Sherrill
,
R. C.
Merkle
, and
R. A.
Freitas
,
J. Phys. Chem. A
110
,
11160
(
2006
).
86.
M. B.
Goldey
,
B.
Belzunces
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
11
,
4159
(
2015
).
87.
J. W.
Park
,
R.
Al-Saadon
,
M. K.
MacLeod
,
T.
Shiozaki
, and
B.
Vlaisavljevich
,
Chem. Rev.
120
,
5878
(
2020
).
88.
D.
Hait
and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
12
,
4517
(
2021
).
89.
D.
Stück
and
M.
Head-Gordon
,
J. Chem. Phys.
139
,
244109
(
2013
).
90.
D.
Hait
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
16
,
1699
(
2020
).
91.
M.
Loipersberger
,
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
17
,
5582
(
2021
).
92.
J.
Shee
,
M.
Loipersberger
,
A.
Rettig
,
J.
Lee
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
12
,
12084
(
2021
).
93.
A.
Rettig
,
J.
Shee
,
J.
Lee
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
18
,
5382
(
2022
).
94.
U.
Bozkaya
,
B.
Ermiş
,
Y.
Alagöz
,
A.
Ünal
, and
A. K.
Uyar
,
J. Chem. Phys.
156
,
044801
(
2022
).
95.
P. U.
Manohar
and
A. I.
Krylov
,
J. Chem. Phys.
129
,
194105
(
2008
).
96.
97.
B.
Liu
, “
The simultaneous expansion method for the iterative solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,” in
Numerical Algorithms in Chemistry: Algebraic Methods, Lawrence Berkeley Laboratory
, edited by
C.
Moler
and
I.
Shavitt
(
University of California
,
Berkeley
,
1978
), pp.
49
53
Technical Report LBL-8158.
98.
C. D.
Sherrill
,
Adv. Quantum Chem.
34
,
143
(
1998
).
99.
M. L.
Leininger
,
C. D.
Sherrill
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Comput. Chem.
22
,
1574
(
2001
).
100.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
,
Mol. Phys.
113
,
184
(
2014
).
101.
J.
Fabian
,
L.
Diaz
,
G.
Seifert
, and
T.
Niehaus
,
J. Mol. Struct.: THEOCHEM
594
,
41
(
2002
).
102.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
103.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
104.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
105.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
314
,
152
(
1999
).
106.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
302
,
375
(
1999
).
107.
S.
Hirata
,
T. J.
Lee
, and
M.
Head-Gordon
,
J. Chem. Phys.
111
,
8904
(
1999
).
108.
D.
Maurice
and
M.
Head-Gordon
,
J. Phys. Chem.
100
,
6131
(
1996
).
109.
F.
Turecek
,
J. Phys. Chem. A
119
,
10101
(
2015
).
110.
F.
Turecek
and
R. R.
Julian
,
Chem. Rev.
113
,
6691
(
2013
).
111.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
112.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
113.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
114.
M. R.
Momeni
and
A.
Brown
,
J. Chem. Theory Comput.
11
,
2619
(
2015
).
115.
P.-F.
Loos
,
A.
Scemama
,
M.
Boggio-Pasqua
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
16
,
3720
(
2020
).
116.
K.
Tanaka
and
E. R.
Davidson
,
J. Chem. Phys.
70
,
2904
(
1979
).
You do not currently have access to this content.