Monte Carlo simulations are widely employed to measure the physical properties of glass-forming liquids in thermal equilibrium. Combined with local Monte Carlo moves, the Metropolis algorithm can also be used to simulate the relaxation dynamics, thus offering an efficient alternative to molecular dynamics. Monte Carlo simulations are, however, more versatile because carefully designed Monte Carlo algorithms can more efficiently sample the rugged free energy landscape characteristic of glassy systems. After a brief overview of Monte Carlo studies of glass-formers, we define and implement a series of Monte Carlo algorithms in a three-dimensional model of polydisperse hard spheres. We show that the standard local Metropolis algorithm is the slowest and that implementing collective moves or breaking detailed balance enhances the efficiency of the Monte Carlo sampling. We use time correlation functions to provide a microscopic interpretation of these observations. Seventy years after its invention, the Monte Carlo method remains the most efficient and versatile tool to compute low-temperature properties in supercooled liquids.

1.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Chem. Phys.
100
,
13200
(
1996
).
2.
A.
Cavagna
, “
Supercooled liquids for pedestrians
,”
Phys. Rep.
476
,
51
(
2009
).
3.
L.
Berthier
and
M. D.
Ediger
, “
Facets of glass physics
,”
Phys. Today
69
(
1
),
40
(
2016
).
4.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids
(
Oxford University Press on Demand
,
2008
), Vol.
143
.
5.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
(
2011
).
6.
G.
Parisi
,
P.
Urbani
, and
F.
Zamponi
,
Theory of Simple Glasses
(
Cambridge University Press
,
2020
).
7.
L.
Berthier
and
D. R.
Reichman
, “
Modern computational studies of the glass transition
,”
Nat. Rev. Phys.
5
,
102
(
2023
).
8.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
9.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
,
459
(
1959
).
10.
J.-L.
Barrat
and
J.-N.
Roux
, “
Molecular dynamics simulations of supercooled liquids near the glass transition
,”
J. Non-Cryst. Solids
131–133
,
255
(
1991
).
11.
M. E.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Clarendon Press
,
1999
).
12.
D.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
2021
).
13.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol.
1
.
14.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
(
Academic Press
,
2013
).
15.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
(
2015
).
16.
G.
Tarjus
et al, “
The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment
,”
J. Phys.: Condens. Matter
17
,
R1143
(
2005
).
17.
J.-P.
Bouchaud
and
G.
Biroli
, “
On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses
,”
J. Chem. Phys.
121
,
7347
(
2004
).
18.
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
, “
Thermodynamic signature of growing amorphous order in glass-forming liquids
,”
Nat. Phys.
4
,
771
(
2008
).
19.
L.
Berthier
and
W.
Kob
, “
Static point-to-set correlations in glass-forming liquids
,”
Phys. Rev. E
85
,
011102
(
2012
).
20.
F.
Sciortino
,
W.
Kob
, and
P.
Tartaglia
, “
Inherent structure entropy of supercooled liquids
,”
Phys. Rev. Lett.
83
,
3214
(
1999
).
21.
S.
Sastry
, “
The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids
,”
Nature
409
,
164
(
2001
).
22.
L.
Berthier
,
M.
Ozawa
, and
C.
Scalliet
, “
Configurational entropy of glass-forming liquids
,”
J. Chem. Phys.
150
,
160902
(
2019
).
23.
S.
Franz
and
G.
Parisi
, “
Phase diagram of coupled glassy systems: A mean-field study
,”
Phys. Rev. Lett.
79
,
2486
(
1997
).
24.
L.
Berthier
and
D.
Coslovich
, “
Novel approach to numerical measurements of the configurational entropy in supercooled liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
11668
(
2014
).
25.
B.
Guiselin
,
L.
Berthier
, and
G.
Tarjus
, “
Statistical mechanics of coupled supercooled liquids in finite dimensions
,”
SciPost Phys.
12
,
091
(
2022
).
26.
T.
Gleim
,
W.
Kob
, and
K.
Binder
, “
How does the relaxation of a supercooled liquid depend on its microscopic dynamics?
,”
Phys. Rev. Lett.
81
,
4404
(
1998
).
27.
L.
Berthier
and
W.
Kob
, “
The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture
,”
J. Phys.: Condens. Matter
19
,
205130
(
2007
).
28.
L.
Berthier
, “
Revisiting the slow dynamics of a silica melt using Monte Carlo simulations
,”
Phys. Rev. E
76
,
011507
(
2007
).
29.
L.
Berthier
, “
Efficient measurement of linear susceptibilities in molecular simulations: Application to aging supercooled liquids
,”
Phys. Rev. Lett.
98
,
220601
(
2007
).
30.
C.
Scalliet
,
B.
Guiselin
, and
L.
Berthier
, “
Thirty milliseconds in the life of a supercooled liquid
,”
Phys. Rev. X
12
,
041028
(
2022
).
31.
J.-L.
Barrat
and
L.
Berthier
, “
Computer simulations of the glass transition and glassy materials
,”
C. R. Phys.
24
,
57
(
2024
).
32.
C.
Dress
and
W.
Krauth
, “
Cluster algorithm for hard spheres and related systems
,”
J. Phys. A: Math. Gen.
28
,
L597
(
1995
).
33.
W.
Kranendonk
and
D.
Frenkel
, “
Computer simulation of solid-liquid coexistence in binary hard sphere mixtures
,”
Mol. Phys.
72
,
679
(
1991
).
34.
T. S.
Grigera
and
G.
Parisi
, “
Fast Monte Carlo algorithm for supercooled soft spheres
,”
Phys. Rev. E
63
,
045102
(
2001
).
35.
A.
Ninarello
,
L.
Berthier
, and
D.
Coslovich
, “
Models and algorithms for the next generation of glass transition studies
,”
Phys. Rev. X
7
,
021039
(
2017
).
36.
L.
Berthier
,
E.
Flenner
,
C. J.
Fullerton
,
C.
Scalliet
, and
M.
Singh
, “
Efficient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids
,”
J. Stat. Mech.: Theory Exp.
2019
,
064004
.
37.
L.
Berthier
,
P.
Charbonneau
, and
J.
Kundu
, “
Bypassing sluggishness: Swap algorithm and glassiness in high dimensions
,”
Phys. Rev. E
99
,
031301
(
2019
).
38.
A. D. S.
Parmar
,
M.
Ozawa
, and
L.
Berthier
, “
Ultrastable metallic glasses in silico
,”
Phys. Rev. Lett.
125
,
085505
(
2020
).
39.
R.
Alvarez-Donado
,
S.
Bonfanti
, and
M.
Alava
, “
Simulated multi-component metallic glasses akin to experiments
,” arXiv:2309.05806 (
2023
).
40.
K.
Hukushima
and
K.
Nemoto
, “
Exchange Monte Carlo method and application to spin glass simulations
,”
J. Phys. Soc. Jpn.
65
,
1604
(
1996
).
41.
R.
Yamamoto
and
W.
Kob
, “
Replica-exchange molecular dynamics simulation for supercooled liquids
,”
Phys. Rev. E
61
,
5473
(
2000
).
42.
G.
Jung
,
G.
Biroli
, and
L.
Berthier
, “
Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
,”
Mach. Learn.: Sci. Technol.
(in press) (
2024
).
43.
W.
Krauth
,
Statistical Mechanics: Algorithms and Computations
(
OUP
,
Oxford
,
2006
), Vol.
13
.
44.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
, “
Event-chain Monte Carlo algorithms for hard-sphere systems
,”
Phys. Rev. E
80
,
056704
(
2009
).
45.
K. S.
Turitsyn
,
M.
Chertkov
, and
M.
Vucelja
, “
Irreversible Monte Carlo algorithms for efficient sampling
,”
Physica D
240
,
410
(
2011
).
46.
F.
Chen
,
L.
Lovász
, and
I.
Pak
, “
Lifting Markov chains to speed up mixing
,” in
Proceedings of the 31st Annual ACM Symposium Theory of Computing
(
Association for Computing Machinery
,
1999
), pp.
275
281
.
47.
P.
Diaconis
,
S.
Holmes
, and
R. M.
Neal
, “
Analysis of a nonreversible Markov chain sampler
,”
Annals Appl. Probab.
10
,
726
(
2000
).
48.
Y.
Sakai
and
K.
Hukushima
, “
Dynamics of one-dimensional Ising model without detailed balance condition
,”
J. Phys. Soc. Jpn.
82
,
064003
(
2013
).
49.
Y.
Sakai
and
K.
Hukushima
, “
Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions
,”
Phys. Rev. E
93
,
043318
(
2016
).
50.
M.
Vucelja
, “
Lifting—A nonreversible Markov chain Monte Carlo algorithm
,”
Am. J. Phys.
84
,
958
(
2016
).
51.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
52.
M.
Michel
,
S. C.
Kapfer
, and
W.
Krauth
, “
Generalized event-chain Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesimal steps
,”
J. Chem. Phys.
140
,
054116
(
2014
).
53.
F.
Ghimenti
,
L.
Berthier
, and
F.
van Wijland
, “
Irreversible Monte Carlo algorithms for hard disk glasses: From event-chain to collective swaps
,”
Phys. Rev. Lett.
133
,
028202
(
2024
).
54.
L.
Berthier
,
D.
Coslovich
,
A.
Ninarello
, and
M.
Ozawa
, “
Equilibrium sampling of hard spheres up to the jamming density and beyond
,”
Phys. Rev. Lett.
116
,
238002
(
2016
).
55.
L.
Berthier
,
P.
Charbonneau
,
D.
Coslovich
,
A.
Ninarello
,
M.
Ozawa
, and
S.
Yaida
, “
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11356
(
2017
).
56.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
(
1970
).
57.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
(
1964
).
58.
W.
Kob
,
C.
Donati
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
, “
Dynamical heterogeneities in a supercooled Lennard-Jones liquid
,”
Phys. Rev. Lett.
79
,
2827
(
1997
).
59.
L.
Berthier
and
T. A.
Witten
, “
Glass transition of dense fluids of hard and compressible spheres
,”
Phys. Rev. E
80
,
021502
(
2009
).
60.
A.
Donev
,
S.
Torquato
,
F. H.
Stillinger
, and
R.
Connelly
, “
Comment on ‘jamming at zero temperature and zero applied stress: The epitome of disorder’
,”
Phys. Rev. E
70
,
043301
(
2004
).
61.
C. S.
O’Hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Reply to comment on ‘jamming at zero temperature and zero applied stress: The epitome of disorder’
,”
Phys. Rev. E
70
,
043302
(
2004
).
62.
D.
Chandler
and
J. P.
Garrahan
, “
Dynamics on the way to forming glass: Bubbles in space-time
,”
Annu. Rev. Phys. Chem.
61
,
191
(
2010
).
63.
C. S.
O’Hern
,
S. A.
Langer
,
A. J.
Liu
, and
S. R.
Nagel
, “
Random packings of frictionless particles
,”
Phys. Rev. Lett.
88
,
075507
(
2002
).
64.
M.
Ozawa
,
L.
Berthier
, and
D.
Coslovich
, “
Exploring the jamming transition over a wide range of critical densities
,”
SciPost Phys.
3
,
027
(
2017
).
65.
C.
Brito
,
E.
Lerner
, and
M.
Wyart
, “
Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles
,”
Phys. Rev. X
8
,
031050
(
2018
).
66.
V. F.
Hagh
,
S. R.
Nagel
,
A. J.
Liu
,
M. L.
Manning
, and
E. I.
Corwin
, “
Transient learning degrees of freedom for introducing function in materials
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2117622119
(
2022
).
67.
V.
Bolton-Lum
,
R. C.
Dennis
,
P.
Morse
, and
E.
Corwin
, “
The ideal glass and the ideal disk packing in two dimensions
,” arXiv:2404.07492 (
2024
).
68.
W.
Krauth
, “
Event-chain Monte Carlo: Foundations, applications, and prospects
,”
Front. Phys.
9
,
663457
(
2021
).
69.
Y.
Nishikawa
,
W.
Krauth
, and
A. C.
Maggs
, “
Liquid-hexatic transition for soft disks
,”
Phys. Rev. E
108
,
024103
(
2023
).
You do not currently have access to this content.