We developed a computer code for the thermodynamic quantum Fokker–Planck equations (T-QFPE), derived from a thermodynamic system–bath model. This model consists of an anharmonic subsystem coupled to multiple Ohmic baths at different temperatures, which are connected to or disconnected from the subsystem as a function of time. The code numerically integrates the T-QFPE and their classical expression to simulate isothermal, isentropic, thermostatic, and entropic processes in both quantum and classical cases. The accuracy of the results was verified by comparing the analytical solutions of the Brownian oscillator. In addition, we illustrated a breakdown of the Markovian Lindblad-master equation in the pure quantum regime. As a demonstration, we simulated a thermostatic Stirling engine employed to develop non-equilibrium thermodynamics [S. Koyanagi and Y. Tanimura, J. Chem. Phys. 161, 114113 (2024)] under quasi-static conditions. The quasi-static thermodynamic potentials, described as intensive and extensive variables, were depicted as work diagrams. In the classical case, the work done by the external field is independent of the system–bath coupling strength. In contrast, in the quantum case, the work decreases as the coupling strength increases due to quantum entanglement between the subsystem and bath. The codes were developed for multicore processors using Open Multi-Processing (OpenMP) and for graphics processing units using the Compute Unified Device Architecture. These codes are provided in the supplementary material.

1.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
, “
Quantum Brownian motion: The functional integral approach
,”
Phys. Rep.
168
,
115
207
(
1988
).
2.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
2012
).
3.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
4.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
5.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
6.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
6687
(
1990
).
7.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
8.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
9.
Y.
Tanimura
, “
Real-time and imaginary-time quantum hierarchal Fokker–Planck equations
,”
J. Chem. Phys.
142
,
144110
(
2015
).
10.
Y.
Tanimura
and
P. G.
Wolynes
, “
Quantum and classical Fokker–Planck equations for a Gaussian–Markovian noise bath
,”
Phys. Rev. A
43
,
4131
4142
(
1991
).
11.
Y.
Tanimura
and
P. G.
Wolynes
, “
The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: A numerical study
,”
J. Chem. Phys.
96
,
8485
8496
(
1992
).
12.
A.
Kato
and
Y.
Tanimura
, “
Quantum suppression of ratchet rectification in a Brownian system driven by a biharmonic force
,”
J. Phys. Chem. B
117
,
13132
13144
(
2013
).
13.
A.
Sakurai
and
Y.
Tanimura
, “
Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations
,”
J. Phys. Chem. A
115
,
4009
4022
(
2011
).
14.
T.
Ikeda
and
Y.
Tanimura
, “
Low-temperature quantum Fokker–Planck and Smoluchowski equations and their extension to multistate systems
,”
J. Chem. Theory Comput.
15
,
2517
2534
(
2019
).
15.
L.
Song
and
Q.
Shi
, “
Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator
,”
Phys. Rev. B
95
,
064308
(
2017
).
16.
H.
Gong
,
Y.
Wang
,
X.
Zheng
,
R.
Xu
, and
Y.
Yan
, “
Nonequilibrium work distributions in quantum impurity system–bath mixing processes
,”
J. Chem. Phys.
157
,
054109
(
2022
).
17.
C. L.
Latune
,
G.
Pleasance
, and
F.
Petruccione
, “
Cyclic quantum engines enhanced by strong bath coupling
,”
Phys. Rev. Appl.
20
,
024038
(
2023
).
18.
V.
Boettcher
,
R.
Hartmann
,
K.
Beyer
, and
W. T.
Strunz
, “
Dynamics of a strongly coupled quantum heat engine—Computing bath observables from the hierarchy of pure states
,”
J. Chem. Phys.
160
,
094108
(
2024
).
19.
S.
Gatto
,
A.
Colla
,
H.-P.
Breuer
, and
M.
Thoss
, “
Quantum thermodynamics of the spin-boson model using the principle of minimal dissipation
,” arXiv:2404.12118 [quant-ph] (
2024
).
20.
N.
Makri
, “
Numerical path integral techniques for long time dynamics of quantum dissipative systems
,”
J. Math. Phys.
36
,
2430
2457
(
1995
).
21.
N.
Makri
and
D. E.
Makarov
, “
Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory
,”
J. Chem. Phys.
102
,
4600
4610
(
1995
).
22.
N.
Makri
and
D. E.
Makarov
, “
Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology
,”
J. Chem. Phys.
102
,
4611
4618
(
1995
).
23.
M.
Thorwart
,
P.
Reimann
, and
P.
Hänggi
, “
Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator
,”
Phys. Rev. E
62
,
5808
5817
(
2000
).
24.
V.
Jadhao
and
N.
Makri
, “
Iterative Monte Carlo for quantum dynamics
,”
J. Chem. Phys.
129
,
161102
(
2008
).
25.
N.
Makri
, “
Blip decomposition of the path integral: Exponential acceleration of real-time calculations on quantum dissipative systems
,”
J. Chem. Phys.
141
,
134117
(
2014
).
26.
D.
Segal
,
A. J.
Millis
, and
D. R.
Reichman
, “
Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation
,”
Phys. Rev. B
82
,
205323
(
2010
).
27.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat transport of a two-qubit system: Interplay between system–bath coherence and qubit–qubit coherence
,”
J. Chem. Phys.
143
,
064107
(
2015
).
28.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).
29.
S.
Sakamoto
and
Y.
Tanimura
, “
Numerically ‘exact’ simulations of entropy production in the fully quantum regime: Boltzmann entropy vs von Neumann entropy
,”
J. Chem. Phys.
153
,
234107
(
2020
).
30.
S.
Sakamoto
and
Y.
Tanimura
, “
Open quantum dynamics theory for non-equilibrium work: Hierarchical equations of motion approach
,”
J. Phys. Soc. Jpn.
90
,
033001
(
2021
).
31.
S.
Koyanagi
and
Y.
Tanimura
, “
The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach
,”
J. Chem. Phys.
157
,
014104
(
2022
).
32.
S.
Koyanagi
and
Y.
Tanimura
, “
Numerically ‘exact’ simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams
,”
J. Chem. Phys.
157
,
084110
(
2022
).
33.
S.
Koyanagi
and
Y.
Tanimura
, “
Classical and quantum thermodynamics described as a system–bath model: The dimensionless minimum work principle
,”
J. Chem. Phys.
160
,
234112
(
2024
).
34.
S.
Koyanagi
and
Y.
Tanimura
, “
Classical and quantum thermodynamics in non-equilibrium regime: Application to thermostatic Stirling engine
,”
J. Chem. Phys.
161
,
114113
(
2024
).
35.
P.
Ullersma
, “
An exactly solvable model for Brownian motion: I. Derivation of the Langevin equation
,”
Physica
32
,
27
55
(
1966
).
36.
P.
Ullersma
, “
An exactly solvable model for Brownian motion: II. Derivation of the Fokker–Planck equation and the master equation
,”
Physica
32
,
56
73
(
1966
).
37.
A.
Caldeira
and
A.
Leggett
, “
Path integral approach to quantum Brownian motion
,”
Physica A
121
,
587
616
(
1983
).
38.
S.
Koyanagi
and
Y.
Tanimura
, “
Thermodynamic hierarchical equations of motion and their application to Carnot engine
,” arXiv:2408.02249 [cond-mat.stat-mech] (
2024
).
39.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
, “
Communication: Padé spectrum decomposition of Fermi function and Bose function
,”
J. Chem. Phys.
133
,
101106
(
2010
).
40.
B.-L.
Tian
,
J.-J.
Ding
,
R.-X.
Xu
, and
Y.
Yan
, “
Biexponential theory of Drude dissipation via hierarchical quantum master equation
,”
J. Chem. Phys.
133
,
114112
(
2010
).
41.
J.
Hu
,
M.
Luo
,
F.
Jiang
,
R.-X.
Xu
, and
Y.
Yan
, “
Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems
,”
J. Chem. Phys.
134
,
244106
(
2011
).
42.
A.
Sakurai
and
Y.
Tanimura
, “
An approach to quantum transport based on reduced hierarchy equations of motion: Application to a resonant tunneling diode
,”
J. Phys. Soc. Jpn.
82
,
033707
(
2013
).
43.
A.
Sakurai
and
Y.
Tanimura
, “
Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira–Leggett Hamiltonian
,”
New J. Phys.
16
,
015002
(
2014
).
44.
F.
Grossmann
,
A.
Sakurai
, and
Y.
Tanimura
, “
Electron pumping under non-Markovian dissipation: The role of the self-consistent field
,”
J. Phys. Soc. Jpn.
85
,
034803
(
2016
).
45.
T.
Ikeda
,
A. G.
Dijkstra
, and
Y.
Tanimura
, “
Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra
,”
J. Chem. Phys.
150
,
114103
(
2019
).
46.
W. R.
Frensley
, “
Boundary conditions for open quantum systems driven far from equilibrium
,”
Rev. Mod. Phys.
62
,
745
791
(
1990
).
47.
H.
Risken
and
H.
Risken
,
Fokker–Planck Equation
(
Springer
,
1996
).
48.
Z.-H.
Chen
,
Y.
Wang
,
X.
Zheng
,
R.-X.
Xu
, and
Y.
Yan
, “
Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations
,”
J. Chem. Phys.
156
,
221102
(
2022
).
49.
M.
Xu
,
Y.
Yan
,
Q.
Shi
,
J.
Ankerhold
, and
J. T.
Stockburger
, “
Taming quantum noise for efficient low temperature simulations of open quantum systems
,”
Phys. Rev. Lett.
129
,
230601
(
2022
).
50.
H.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
51.
Y.
Tanimura
and
Y.
Maruyama
, “
Gaussian–Markovian quantum Fokker–Planck approach to nonlinear spectroscopy of a displaced Morse potentials system: Dissociation, predissociation, and optical Stark effects
,”
J. Chem. Phys.
107
,
1779
1793
(
1997
).
52.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
,
119
130
(
1976
).
53.
M.
Esposito
,
U.
Harbola
, and
S.
Mukamel
, “
Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
,”
Rev. Mod. Phys.
81
,
1665
1702
(
2009
).
54.
M.
Campisi
,
P.
Hänggi
, and
P.
Talkner
, “
Colloquium: Quantum fluctuation relations: Foundations and applications
,”
Rev. Mod. Phys.
83
,
771
791
(
2011
).
55.
T.
Sagawa
, “
Second law-like inequalities with quantum relative entropy: An introduction
,” in
Lectures on Quantum Computing, Thermodynamics and Statistical Physics
, Kinki University Series on Quantum Computing (World Scientific,
2012
), pp.
120
190
.
56.
T.
Schmiedl
and
U.
Seifert
, “
Efficiency at maximum power: An analytically solvable model for stochastic heat engines
,”
Europhys. Lett.
81
,
20003
(
2007
).
57.
U.
Seifert
, “
Stochastic thermodynamics, fluctuation theorems and molecular machines
,”
Rep. Prog. Phys.
75
,
126001
(
2012
).
58.
M.
Esposito
and
C. V.
den Broeck
, “
Second law and Landauer principle far from equilibrium
,”
Europhys. Lett.
95
,
40004
(
2011
).
59.
P.
Strasberg
,
Quantum Stochastic Thermodynamics: Foundations and Selected Applications
(
Oxford University Press
,
2022
).
60.
R.
Rao
and
M.
Esposito
, “
Conservation laws shape dissipation
,”
New J. Phys.
20
,
023007
(
2018
).
61.
C.
Cockrell
and
I. J.
Ford
, “
Stochastic thermodynamics in a non-Markovian dynamical system
,”
Phys. Rev. E
105
,
064124
(
2022
).
62.
F.
Wu
,
L.
Chen
,
F.
Sun
,
C.
Wu
, and
Y.
Zhu
, “
Performance and optimization criteria for forward and reverse quantum Stirling cycles
,”
Energy Convers. Manage.
39
,
733
739
(
1998
).
63.
S.
Hamedani Raja
,
S.
Maniscalco
,
G. S.
Paraoanu
,
J. P.
Pekola
, and
N.
Lo Gullo
, “
Finite-time quantum Stirling heat engine
,”
New J. Phys.
23
,
033034
(
2021
).
64.
X.-L.
Huang
,
X.-Y.
Niu
,
X.-M.
Xiu
, and
X.-X.
Yi
, “
Quantum Stirling heat engine and refrigerator with single and coupled spin systems
,”
Eur. Phys. J. D
68
,
32
(
2014
).
65.
S.
Xia
,
M.
Lv
,
Y.
Pan
,
J.
Chen
, and
S.
Su
, “
Performance improvement of a fractional quantum Stirling heat engine
,”
J. Appl. Phys.
135
,
034302
(
2024
).
66.
Q.
Shi
,
L.
Zhu
, and
L.
Chen
, “
Quantum rate dynamics for proton transfer reaction in a model system: Effect of the rate promoting vibrational mode
,”
J. Chem. Phys.
135
,
044505
(
2011
).
67.
J.
Zhang
,
R.
Borrelli
, and
Y.
Tanimura
, “
Proton tunneling in a two-dimensional potential energy surface with a non-linear system–bath interaction: Thermal suppression of reaction rate
,”
J. Chem. Phys.
152
,
214114
(
2020
).
68.
T.
Ikeda
and
Y.
Tanimura
, “
Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker–Planck equation approach
,”
J. Chem. Phys.
147
,
014102
(
2017
).
69.
T.
Ikeda
,
H.
Ito
, and
Y.
Tanimura
, “
Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system–bath interactions
,”
J. Chem. Phys.
142
,
212421
(
2015
).
70.
H.
Ito
and
Y.
Tanimura
, “
Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water
,”
J. Chem. Phys.
144
,
074201
(
2016
).
71.
H.
Takahashi
and
Y.
Tanimura
, “
Discretized hierarchical equations of motion in mixed Liouville–Wigner space for two-dimensional vibrational spectroscopies of liquid water
,”
J. Chem. Phys.
158
,
044115
(
2023
).
72.
H.
Takahashi
and
Y.
Tanimura
, “
Simulating two-dimensional correlation spectroscopies with third-order infrared and fifth-order infrared-Raman processes of liquid water
,”
J. Chem. Phys.
158
,
124108
(
2023
).
73.
T.
Ikeda
and
G. D.
Scholes
, “
Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions
,”
J. Chem. Phys.
152
,
204101
(
2020
).
74.
H.
Takahashi
,
S.
Rudge
,
C.
Kaspar
,
M.
Thoss
, and
R.
Borrelli
, “
High accuracy exponential decomposition of bath correlation functions for arbitrary and structured spectral densities: Emerging methodologies and new approaches
,”
J. Chem. Phys.
160
,
204105
(
2024
).
75.
B.
Le Dé
,
A.
Jaouadi
,
E.
Mangaud
,
A. W.
Chin
, and
M.
Desouter-Lecomte
, “
Managing temperature in open quantum systems strongly coupled with structured environments
,”
J. Chem. Phys.
160
,
244102
(
2024
).
76.
T.
Ikeda
and
Y.
Tanimura
, “
Phase-space wavepacket dynamics of internal conversion via conical intersection: Multi-state quantum Fokker–Planck equation approach
,”
Chem. Phys.
515
,
203
213
(
2018
).
77.
D.
Hou
,
S.
Wang
,
R.
Wang
,
L.
Ye
,
R.
Xu
,
X.
Zheng
, and
Y.
Yan
, “
Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers
,”
J. Chem. Phys.
142
,
104112
(
2015
).
78.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
79.
R.
Borrelli
, “
Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion
,”
J. Chem. Phys.
150
,
234102
(
2019
).
80.
W. H.
Press
,
W. T.
Vetterling
,
S. A.
Teukolsky
, and
B. P.
Flannery
,
Numerical Recipes
(
Cambridge University Press
,
1988
).
81.
J.
Strümpfer
and
K.
Schulten
, “
Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers
,”
J. Chem. Theory Comput.
8
,
2808
2816
(
2012
).
82.
C.
Kreisbeck
,
T.
Kramer
, and
A.
Aspuru-Guzik
, “
Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes
,”
J. Chem. Theory Comput.
10
,
4045
4054
(
2014
).
83.
T.
Kramer
,
M.
Noack
,
J. R.
Reimers
,
A.
Reinefeld
,
M.
Rodríguez
, and
S.
Yin
, “
Energy flow in the photosystem I supercomplex: Comparison of approximative theories with DM-HEOM
,”
Chem. Phys.
515
,
262
271
(
2018
); a part of Special Issue: ultrafast Photoinduced Processes in Polyatomic Molecules: Electronic Structure, Dynamics and Spectroscopy (Dedicated to Wolfgang Domcke on the occasion of his 70th birthday).
84.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodríguez
, and
B.
Hein
, “
High-performance solution of hierarchical equations of motion for studying energy transfer in light-harvesting complexes
,”
J. Chem. Theory Comput.
7
,
2166
2174
(
2011
).
85.
B.
Hein
,
C.
Kreisbeck
,
T.
Kramer
, and
M.
Rodríguez
, “
Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex
,”
New J. Phys.
14
,
023018
(
2012
).
86.
M.
Tsuchimoto
and
Y.
Tanimura
, “
Spins dynamics in a dissipative environment: Hierarchal equations of motion approach using a graphics processing unit (GPU)
,”
J. Chem. Theory Comput.
11
,
3859
3865
(
2015
).
87.
K.
Okumura
and
Y.
Tanimura
, “
Unified time-path approach to the effect of anharmonicity on the molecular vibrational spectroscopy in solution
,”
J. Chem. Phys.
105
,
7294
7309
(
1996
).
88.
Y.
Tanimura
and
K.
Okumura
, “
First-, third-, and fifth-order resonant spectroscopy of an anharmonic displaced oscillators system in the condensed phase
,”
J. Chem. Phys.
106
,
2078
2095
(
1997
).
You do not currently have access to this content.