We present a dynamic density functional theory for modeling the effects of applied electric fields on the local structure of polymers with added salt (polymer electrolytes). Time-dependent equations for the local electrostatic potential and volume fractions of polymer, cation, and anion of added salt are developed using the principles of linear irreversible thermodynamics. For such a development, a field theoretic description of the free energy of polymer melts doped with salts is used, which captures the effects of local variations in the dielectric function. Connections of the dynamic density functional theory with experiments are established by relating the three phenomenological Onsager’s transport coefficients of the theory to the mutual diffusion of electrolyte, ionic conductivity, and transference number of one of the ions. The theory is connected with a statistical mechanical model developed by Bearman and Kirkwood [J. Chem. Phys. 28, 136 (1958)] after relating the three transport coefficients to friction coefficients. The steady-state limit of the dynamic density functional theory is used to understand the effects of dielectric inhomogeneity on the phase separation in polymer electrolytes. The theory developed here provides not only a way to connect with experiments but also to develop multi-scale models for studying connections between local structure and ion transport in polymer electrolytes.

1.
D. E.
Fenton
,
J. M.
Parker
, and
P. V.
Wright
, “
Complexes of alkali metal ions with poly(ethylene oxide)
,”
Polymer
14
(
11
),
589
(
1973
).
2.
D. T.
Hallinan
, Jr.
and
N. P.
Balsara
, “
Polymer electrolytes
,”
Annu. Rev. Mater. Res.
43
,
503
525
(
2013
).
3.
V.
Bocharova
and
A. P.
Sokolov
, “
Perspectives for polymer electrolytes: A view from fundamentals of ionic conductivity
,”
Macromolecules
53
(
11
),
4141
4157
(
2020
).
4.
C. Y.
Son
and
Z.-G.
Wang
, “
Ion transport in small-molecule and polymer electrolytes
,”
J. Chem. Phys.
153
(
10
),
100903
(
2020
).
5.
N. S.
Schauser
,
G. A.
Kliegle
,
P.
Cooke
,
R. A.
Segalman
, and
R.
Seshadri
, “
Database creation, visualization, and statistical learning for polymer Li+-electrolyte design
,”
Chem. Mater.
33
(
13
),
4863
4876
(
2021
).
6.
S. D.
Jones
,
J.
Bamford
,
G. H.
Fredrickson
, and
R. A.
Segalman
, “
Decoupling ion transport and matrix dynamics to make high performance solid polymer electrolytes
,”
ACS Polym. Au
2
(
6
),
430
448
(
2022
).
7.
G.
Bradford
,
J.
Lopez
,
J.
Ruza
,
M. A.
Stolberg
,
R.
Osterude
,
J. A.
Johnson
,
R.
Gomez-Bombarelli
, and
Y.
Shao-Horn
, “
Chemistry-informed machine learning for polymer electrolyte discovery
,”
ACS Cent. Sci.
9
(
2
),
206
216
(
2023
).
8.
D.
Mecerreyes
,
N.
Casado
,
I.
Villaluenga
, and
M.
Forsyth
, “
Current trends and perspectives of polymers in batteries
,”
Macromolecules
57
(
7
),
3013
3025
(
2024
).
9.
S. D.
Jones
,
H.
Nguyen
,
P. M.
Richardson
,
Y.-Q.
Chen
,
K. E.
Wyckoff
,
C. J.
Hawker
,
R. J.
Clément
,
G. H.
Fredrickson
, and
R. A.
Segalman
, “
Design of polymeric zwitterionic solid electrolytes with superionic lithium transport
,”
ACS Cent. Sci.
8
(
2
),
169
175
(
2022
).
10.
S.
Mogurampelly
,
J. R.
Keith
, and
V.
Ganesan
, “
Mechanisms underlying ion transport in polymerized ionic liquids
,”
J. Am. Chem. Soc.
139
(
28
),
9511
9514
(
2017
).
11.
Z.
Zhang
,
B. K.
Wheatle
,
J.
Krajniak
,
J. R.
Keith
, and
V.
Ganesan
, “
Ion mobilities, transference numbers, and inverse haven ratios of polymeric ionic liquids
,”
ACS Macro Lett.
9
(
1
),
84
89
(
2020
).
12.
B. K.
Wheatle
,
N. A.
Lynd
, and
V.
Ganesan
, “
Effect of polymer polarity on ion transport: A competition between ion aggregation and polymer segmental dynamics
,”
ACS Macro Lett.
7
(
10
),
1149
1154
(
2018
).
13.
V.
Ganesan
, “
Ion transport in polymeric ionic liquids: Recent developments and open questions
,”
Mol. Syst. Des. Eng.
4
,
280
293
(
2019
).
14.
Z.
Zhu
,
X.
Luo
, and
S. J.
Paddison
, “
Coarse-grained modeling of ion-containing polymers
,”
Chem. Rev.
122
(
12
),
10710
10745
(
2022
).
15.
K.-H.
Shen
,
M.
Fan
, and
L. M.
Hall
, “
Molecular dynamics simulations of ion-containing polymers using generic coarse-grained models
,”
Macromolecules
54
(
5
),
2031
2052
(
2021
).
16.
K.-H.
Shen
and
L. M.
Hall
, “
Ion conductivity and correlations in model salt-doped polymers: Effects of interaction strength and concentration
,”
Macromolecules
53
(
10
),
3655
3668
(
2020
).
17.
Y.
Fu
,
V.
Bocharova
,
M.
Ma
,
A. P.
Sokolov
,
B. G.
Sumpter
, and
R.
Kumar
, “
Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses
,”
Phys. Chem. Chem. Phys.
19
,
27442
27451
(
2017
).
18.
L.
Onsager
and
S. K.
Kim
, “
Wien effect in simple strong electrolytes
,”
J. Phys. Chem.
61
(
2
),
198
215
(
1957
).
19.
R.
Kumar
,
V.
Bocharova
,
E.
Strelcov
,
A.
Tselev
,
I. I.
Kravchenko
,
S.
Berdzinski
,
V.
Strehmel
,
O. S.
Ovchinnikova
,
J. A.
Minutolo
,
J. R.
Sangoro
et al, “
Ion transport and softening in a polymerized ionic liquid
,”
Nanoscale
7
(
3
),
947
955
(
2015
).
20.
Y.
Tsori
,
F.
Tournilhac
, and
L.
Leibler
, “
Orienting ion-containing block copolymers using ac electric fields
,”
Macromolecules
36
(
15
),
5873
5877
(
2003
).
21.
Y.
Tsori
and
L.
Leibler
, “
Phase-separation in ion-containing mixtures in electric fields
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
18
),
7348
7350
(
2007
).
22.
D. T.
Hallinan
,
I.
Villaluenga
, and
N. P.
Balsara
, “
Polymer and composite electrolytes
,”
MRS Bull.
43
(
10
),
759
767
(
2018
).
23.
S.
Kirkpatrick
, “
Classical transport in disordered media: Scaling and effective-medium theories
,”
Phys. Rev. Lett.
27
(
25
),
1722
(
1971
).
24.
D.
Fraggedakis
,
M.
Mirzadeh
,
T.
Zhou
, and
M. Z.
Bazant
, “
Dielectric breakdown by electric-field induced phase separation
,”
J. Electrochem. Soc.
167
(
11
),
113504
(
2020
).
25.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Courier Corporation
,
2013
).
26.
M.
Doi
, “
Onsager’s variational principle in soft matter
,”
J. Phys.: Condens. Matter
23
(
28
),
284118
(
2011
).
27.
R.
Kumar
,
J. P.
Mahalik
,
V.
Bocharova
,
E. W.
Stacy
,
C.
Gainaru
,
T.
Saito
,
M. P.
Gobet
,
S.
Greenbaum
,
B. G.
Sumpter
, and
A. P.
Sokolov
, “
A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
,”
J. Chem. Phys.
146
(
6
),
064902
(
2017
).
28.
R.
Kumar
,
J. P.
Mahalik
,
K. S.
Silmore
,
Z.
Wojnarowska
,
A.
Erwin
,
J. F.
Ankner
,
A. P.
Sokolov
,
B. G.
Sumpter
, and
V.
Bocharova
, “
Capacitance of thin films containing polymerized ionic liquids
,”
Sci. Adv.
6
(
26
),
eaba7952
(
2020
).
29.
S.
Zhang
and
R.
Kumar
, “
Effects of local order parameter dependent transport coefficient in diblock copolymers under applied electric fields
,”
J. Chem. Phys.
156
(
17
),
174903
(
2022
).
30.
R.
Kumar
,
Z.
Liu
,
B.
Lokitz
,
J.
Chen
,
J.-M.
Carrillo
,
J.
Jakowski
,
C. P.
Collier
,
S.
Retterer
, and
R.
Advincula
, “
Harnessing autocatalytic reactions in polymerization and depolymerization
,”
MRS Commun.
11
(
4
),
377
390
(
2021
).
31.
A. J.
Bard
,
L. R.
Faulkner
, and
H. S.
White
,
Electrochemical Methods: Fundamentals and Applications
(
John Wiley & Sons
,
2022
).
32.
J.
Newman
and
N. P.
Balsara
,
Electrochemical Systems
(
John Wiley & Sons
,
2021
).
33.
K.
Kawasaki
and
K.
Sekimoto
, “
Morphology dynamics of block copolymer systems
,”
Physica A
148
(
3
),
361
413
(
1988
).
34.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
35.
R.
Kumar
,
A. H.
Slim
,
A.
Faraone
,
J.-M. Y.
Carrillo
,
R.
Poling-Skutvik
,
M.
Muthukumar
,
A. B.
Marciel
, and
J. C.
Conrad
, “
Pivotal roles of triple screening-topological, electrostatic, and hydrodynamic-on dynamics in semidilute polyelectrolyte solutions
,”
Macromolecules
57
(
6
),
2888
2896
(
2024
).
36.
R. J.
Bearman
and
J. G.
Kirkwood
, “
Statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems
,”
J. Chem. Phys.
28
(
1
),
136
145
(
1958
).
37.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
(
4
),
405
(
1931
).
38.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
(
12
),
2265
(
1931
).
39.
J.
Cummings
,
J. S.
Lowengrub
,
B. G.
Sumpter
,
S. M.
Wise
, and
R.
Kumar
, “
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
,”
Soft Matter
14
,
1833
1846
(
2018
).
40.
J. P.
Mahalik
,
B. G.
Sumpter
, and
R.
Kumar
, “
Understanding the effects of symmetric salt on the structure of a planar dipolar polymer brush
,”
J. Chem. Phys.
149
(
16
),
163334
(
2018
).
41.
B. A.
George
and
H. J.
Weber
,
Mathematical Methods for Physicists
, 4th ed. (
Academic Press
,
San Diego, CA
,
1995
).
42.
H.
Tang
and
K. F.
Freed
, “
Free energy functional expansion for inhomogeneous polymer blends
,”
J. Chem. Phys.
94
(
2
),
1572
1583
(
1991
).
43.
L.
Davidovich Landau
,
J. S.
Bell
,
M. J.
Kearsley
,
L. P.
Pitaevskii
,
E. M.
Lifshitz
, and
J. B.
Sykes
,
Electrodynamics of Continuous Media
(
Elsevier
,
2013
), Vol.
8
.
44.
R.
Kumar
,
W.
Li
,
B. G.
Sumpter
, and
M.
Muthukumar
, “
Understanding the effects of dipolar interactions on the thermodynamics of diblock copolymer melts
,”
J. Chem. Phys.
151
(
5
),
054902
(
2019
).
45.
R.
Kumar
,
B. G.
Sumpter
, and
M.
Muthukumar
, “
Enhanced phase segregation induced by dipolar interactions in polymer blends
,”
Macromolecules
47
(
18
),
6491
6502
(
2014
).
46.
Z.
Wojnarowska
,
H.
Feng
,
Y.
Fu
,
S.
Cheng
,
B.
Carroll
,
R.
Kumar
,
V. N.
Novikov
,
A. M.
Kisliuk
,
T.
Saito
,
N.-G.
Kang
et al, “
Effect of chain rigidity on the decoupling of ion motion from segmental relaxation in polymerized ionic liquids: Ambient and elevated pressure studies
,”
Macromolecules
50
(
17
),
6710
6721
(
2017
).
47.
K.
Kawasaki
and
K.
Sekimoto
, “
Dynamical theory of polymer melt morphology
,”
Physica A
143
(
3
),
349
413
(
1987
).
48.
A.
Katchalsky
and
P. F.
Curran
,
Nonequilibrium Thermodynamics in Biophysics
(
Harvard University Press
,
1965
).
49.
E.
Helfand
, “
Theory of the molecular friction constant
,”
Phys. Fluids
4
(
6
),
681
691
(
1961
).
50.
D.
Broseta
,
G. H.
Fredrickson
,
E.
Helfand
, and
L.
Leibler
, “
Molecular weight and polydispersity effects at polymer–polymer interfaces
,”
Macromolecules
23
(
1
),
132
139
(
1990
).
51.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
2006
).
52.
B. R.
Carrick
,
S.
Weigand
,
C. L.
Seitzinger
, and
T. P.
Lodge
, “
Concentration and temperature dependence of the interaction parameter and correlation length for poly(benzyl methacrylate) in ionic liquids
,”
Macromolecules
55
(
19
),
8899
8908
(
2022
).
53.
P. P.
Angelopoulou
,
L. T.
Kearney
,
J. K.
Keum
,
L.
Collins
,
R.
Kumar
,
G.
Sakellariou
,
R. C.
Advincula
,
J. W.
Mays
, and
K.
Hong
, “
High-χ diblock copolymers containing poly(vinylpyridine-N-oxide) segments
,”
J. Mater. Chem. A
11
(
18
),
9846
9858
(
2023
).
54.
I.
Villaluenga
,
D. M.
Pesko
,
K.
Timachova
,
Z.
Feng
,
J.
Newman
,
V.
Srinivasan
, and
N. P.
Balsara
, “
Negative Stefan–Maxwell diffusion coefficients and complete electrochemical transport characterization of homopolymer and block copolymer electrolytes
,”
J. Electrochem. Soc.
165
(
11
),
A2766
A2773
(
2018
).
55.
D. J.
Amit
and
V.
Martin-Mayor
,
Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers
(
World Scientific Publishing Company
,
2005
).
56.
J. P.
Mahalik
,
B. G.
Sumpter
, and
R.
Kumar
, “
Vertical phase segregation induced by dipolar interactions in planar polymer brushes
,”
Macromolecules
49
(
18
),
7096
7107
(
2016
).
57.
R. J.
Bearman
,
J. G.
Kirkwood
, and
M.
Fixman
, “
Statistical-mechanical theory of transport processes. X. The heat of transport in binary liquid solutions
,”
Adv. Chem. Phys.
1
,
1
13
(
1958
).
You do not currently have access to this content.