Experimental rate coefficients for the quenching of vibrational levels 0 and 1 of the N2+A2Πu state by N2 are presented. The experiments were performed using near-infrared observations of the N2+ Meinel bands excited by electron impact at several pressures of the N2 target/quenching gas. The total removal rate coefficients were derived from a Stern–Volmer analysis of the Meinel band intensities as a function of N2 density and yielded rate coefficients of (2.5 ± 0.5 × 10−10) and (5.6 ± 0.6 × 10−10) cm3⋅molecule−1⋅s−1 for vibrational levels 0 and 1, respectively. It is shown that rate coefficients increase with increasing vibrational level and decreasing energy gap. Our results impact modeling studies of the disturbed atmosphere and ionosphere as the reduced quenching rate coefficients for the preferentially excited A-state vibrational levels <2 lower the quenching altitude in the atmosphere by one scale height, or about 6 km.

1.
R. L.
Gattinger
and
A. V.
Jones
, “
N2+ Meinel auroral spectra in the 1.5 μ region
,”
Can. J. Phys.
51
,
287
291
(
1973
).
2.
D. C.
Cartwright
,
W. R.
Pendleton
, Jr.
, and
L. D.
Weaver
, “
Auroral emission of the N2+ Meinel bands
,”
J. Geophys. Res.
80
,
651
654
, (
1975
).
3.
A. V.
Jones
and
R. L.
Gattinger
, “
Quantitative spectroscopy of the aurora. IV. The spectrum of medium intensity aurora between 8800 Å and 11400 Å
,”
Can. J. Phys.
54
,
2128
2133
(
1976
).
4.
R. L.
Gattinger
and
A. V.
Jones
, “
Quantitative spectroscopy of the aurora. V. The spectrum of strong aurora between 10000 and 16000 Å
,”
Can. J. Phys.
59
,
480
487
(
1981
).
5.
P. J.
Espy
,
W. R.
Pendleton
, Jr.
,
G. G.
Sivjee
, and
M. P.
Fetrow
, “
Vibrational development of the N2+ Meinel band system in the aurora
,”
J. Geophys. Res.: Space Phys.
92
,
11257
11261
, (
1987
).
6.
C. K.
Mutiso
,
M. D.
Zettergren
,
J. M.
Hughes
, and
G. G.
Sivjee
, “
Thermospheric neutral temperatures derived from charge charge-exchange produced N2+ Meinel (1, 0) rotational distributions
,”
Ann. Geophys.
31
,
463
471
(
2013
).
7.
T.
Nishiyama
,
M.
Taguchi
,
H.
Suzuki
et al, “
Temporal evolutions of N2+Meinel (1, 2) band near 1.5 μm associated with aurora breakup and their effects on mesopause temperature estimations from OH Meinel (3, 1) band
,”
Earth, Planets Space
73
,
30
(
2021
).
8.
T.
Nishiyama
,
M.
Kagitani
,
S.
Furutachi
et al, “
The first simultaneous spectroscopic and monochromatic imaging observations of short-wavelength infrared aurora of N2+ Meinel (0, 0) band at 1.1 μm with incoherent scatter radar
,”
Earth, Planets Space
76
(
1
),
30
(
2024
).
9.
J. L.
Fox
and
A.
Dalgarno
, “
The vibrational distribution of N2+ in the terrestrial ionosphere
,”
J. Geophys. Res.: Space Phys.
90
,
7557
7567
, (
1985
).
10.
P.
Jenniskens
and
C. O.
Laux
, “
Search for the OH (X2Π) Meinel band emission in meteors as a tracer of mineral water in comets: Detection of N2+ (A-X)
,”
Astrobiology
4
,
109
121
(
2004
).
11.
B. D.
Green
,
M. E.
Fraser
,
W. T.
Rawlins
et al, “
Molecular excitation in sprites
,”
Geophys. Res. Lett.
23
,
2161
2164
, (
1996
).
12.
J.
Morrill
,
E.
Bucsela
,
C.
Siefring
et al, “
Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions
,”
Geophys. Res. Lett.
29
,
100-1
100-4
, (
2002
).
13.
E.
Bucsela
,
J. S.
Morrill
,
M. J.
Heavner
et al, “
N2(B3Πg) and N2+(A2Πu) vibrational distributions observed in sprites
,”
J. Atmos. Sol.-Terr. Phys.
65
,
583
590
(
2003
).
14.
F. J.
Gordillo-Vazquez
, “
Vibrational kinetics of air plasmas induced by sprites
,”
J. Geophys. Res.: Space Phys.
115
,
A00E25
, (
2010
).
15.
F. C.
Parra-Rojas
,
A.
Luque
, and
F. J.
Gordillo-Vázquez
, “
Chemical and thermal impacts of sprite streamers in the Earth’s mesosphere
,”
J. Geophys. Res.: Space Phys.
120
,
8899
8933
, (
2015
).
16.
F. J.
Gordillo-Vázquez
and
F. J.
Pérez-Invernón
, “
A review of the impact of transient luminous events on the atmospheric chemistry: Past, present, and future
,”
Atmos. Res.
252
,
105432
(
2021
).
17.
A.
Malagón-Romero
,
F. J.
Pérez-Invernón
, and
F. J.
Gordillo-Vázquez
, “
Chemical activity of low altitude (50 km) sprite streamers
,”
J. Geophys. Res.: Atmos.
128
,
e2023JD038570
, (
2023
).
18.
M. H.
Alexander
and
G. C.
Corey
, “
Collision induced transitions between 2Π and 2Σ states of diatomic molecules: Quantum theory and collisional propensity rules
,”
J. Chem. Phys.
84
(
1
),
100
113
(
1986
).
19.
A. J.
McCaffery
and
R. J.
Marsh
, “
Rotational pathways in electronic energy transfer
,”
J. Chem. Phys.
115
(
21
),
9771
9780
(
2001
).
20.
C. L.
Lawson
and
R. J.
Hanson
,
Solving Least Squares Problems
(
Prentice-Hall
,
Englewood Cliffs
,
1974
), ISBN: 13: 9780138225858.
21.
R.
O’Neil
and
G.
Davidson
, “
The fluorescence of air and nirtrogen excited by energetic electrons
,”
Air Force Cambridge Research Laboratories: AFCRL-67-0277
,
1968
, https://apps.dtic.mil/sti/tr/pdf/AD0673995.pdf.
22.
W. R.
Pendleton
, Jr.
and
L. D.
Weaver
, “
Excitation and de-excitation properties of N2+ (A2Πu)
,”
Final technical report ARPA project 1691 under contract F-33657-71-C-0174A
,
Advanced Research Projects Agency
,
1973
.
23.
L. G.
Piper
,
B. D.
Green
,
W. A. M.
Blumberg
, and
S. J.
Wolnik
, “
N2+ Meinel band quenching
,”
J. Chem. Phys.
82
(
7
),
3139
3145
(
1985
).
24.
D. H.
Katayama
, “
Direct observation of electronic intramolecular energy transfer through a large energy gap
,”
Phys. Rev. Lett.
54
(
7
),
657
660
(
1985
).
25.
D. H.
Katayama
,
A. V.
Dentamaro
, and
J. A.
Welsh
, “
State specific electronic quenching rates for 14N2+ and 15N2+
,”
J. Chem. Phys.
87
(
12
),
6983
6987
(
1987
).
26.
D. H.
Katayama
and
A. V.
Dentamaro
, “
Electronic transitions from the A2Πui(v = 3) level of N2+ induced by inelastic collisions with helium atoms
,”
J. Chem. Phys.
91
(
8
),
4571
4575
(
1989
).
27.
A. B.
Meinel
, “
The auroral spectrum from 6200 TO 8900 Å
,”
Astrophys. J.
113
,
583
588
(
1951
).
28.
A. B.
Meinel
, “
The analysis of auroral emission bands from the A2Π state of N2+
,”
Astrophys. J.
114
,
431
437
(
1951
).
29.
J. R.
Peterson
and
J. T.
Moseley
, “
Time‐of‐flight determination of lifetimes of N2+ (A2Πu)‐the Meinel band system
,”
J. Chem. Phys.
58
(
1
),
172
177
(
1973
).
30.
F. R.
Gilmore
,
R. R.
Laher
, and
P. J.
Espy
, “
Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems
,”
J. Phys. Chem. Ref. Data
21
(
5
),
1005
1107
(
1992
).
31.
A. V.
Jones
and
R. L.
Gattinger
, “
Vibrational development and quenching effects in the N2(B3Πg-A3Σu+) and N2+(A2Πu-X2Σg+) systems in aurora
,”
J. Geophys. Res.: Space Phys.
83
(
A7
),
3255
3261
, (
1978
).
32.
D.
Mandelbaum
and
P. D.
Feldman
, “
Electron impact excitation of the Meinel band system of N2+
,”
J. Chem. Phys.
65
(
2
),
672
677
(
1976
).
33.
A. J.
Steed
and
D. J.
Baker
, “
Night sky spectral emission measurements (λ09–23 μm) using a field-widened interferometer–spectrometer
,”
Appl. Opt.
18
(
20
),
3386
3389
(
1979
).
34.
A. J.
Steed
,
D. J.
Baker
,
B. Y.
Bartschi
, and
A. T.
Stair
, Jr.
, “
Recent auroral measurements using a field-widened interferometer spectrometer
,”
Proc. SPIE
0289
,
202
205
(
1981
), part of Special Issue: At 1981 Intl Conf on Fourier Transform Infrared Spectroscopy.
35.
W.
Pendleton
, Jr.
,
P.
Espy
,
J.
Hartman
,
M.
Fetrow
, and
G.
Sivjee
, “
Nitrogen NI 3F (2P* → 2D*) emissions in the aurora
,”
J. Geophys. Res.: Space Phys.
94
(
A3
),
2595
2604
, (
1989
).
36.
R.
Haque
and
P. J.
Espy
, “
Extraction of planetary wave information from signals collected by a Bomem interferometer
,”
Opt. Eng.
36
(
6
),
1527
1535
(
2000
).
37.
S.
Wüst
,
M.
Bittner
,
P. J.
Espy
,
W. J. R.
French
, and
F. J.
Mulligan
, “
Hydroxyl airglow observations for investigating atmospheric dynamics: Results and challenges
,”
Atmos. Chem. Phys.
23
(
2
),
1599
1618
(
2023
).
38.
F. J.
Harris
, “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
(
1
),
51
83
(
1978
).
39.
M. A.
Branson
, “
Emissivity of various materials
,”
Infrared Radiation
(
Springer
,
Boston
,
1968
), pp.
533
552
.
40.
E. E.
Whiting
, “
Computer program for determining rotational line intensity factors for diatomic molecules
,”
TN-D-7268
,
NASA
,
1973
.
41.
J. H.
van Vleck
, “
On σ-type doubling and electron spin in the spectra of diatomic molecules
,”
Phys. Rev.
33
(
4
),
467
506
(
1929
).
42.
P. J.
Espy
,
C. R.
Harris
,
A. J.
Steed
,
J. C.
Ulwick
,
R.
Haycocka
, and
R.
Straka
, “
Rocketborne interferometer measurement of infrared auroral spectra
,”
Planet. Space Sci.
36
(
6
),
543
551
(
1988
).
43.
P. R.
Bevington
,
Data Reduction and Error Analysis Fo Rthe Physical Sciences
, 1 st ed (
MgGraw-Hill
,
New York
,
1969
), p.
336
, ISBN: 0754321069.
44.
L. G.
Piper
,
B. D.
Green
,
W. A. M.
Blumberg
, and
S. J.
Wolnik
, “
Electron impact excitation of the N2+ Meinel band
,”
J. Phys. B: At. Mol. Phys.
19
(
20
),
3327
3332
(
1986
).
45.
P. J.
Dagdigian
, “
State-resolved collision-induced electronic transitions
,”
Annu. Rev. Phys. Chem.
48
(
1
),
95
123
(
1997
).
46.
F. R.
Simpson
and
J. W.
McConkey
, “
Excitation of the A2πu state of N2+ by electrons
,”
Planet. Space Sci.
17
(
12
),
1941
1948
(
1969
).
47.
D. D.
Gray
,
T. D.
Robert
, and
J. L.
Morack
, “
Measured lifetimes of some A2Πu vibrational levels of N2+ molecules
,”
J. Chem. Phys.
57
(
10
),
4190
4193
(
1972
).
48.
D. H.
Katayama
,
T. A.
Miller
, and
V. E.
Bondybey
, “
Collisional deactivation of selectively excited N2+
,”
J. Chem. Phys.
72
(
10
),
5469
5475
(
1980
).
49.
A. V.
Dentamaro
and
D. H.
Katayama
, “
Energy-gap dependence for inelastic collision-induced electronic transitions in N2+
,”
Phys. Rev. A
43
(
3
),
1306
1312
(
1991
).
50.
A.
Berning
and
H.-J.
Werner
, “
Quantum scattering studies of electronically inelastic collisions of N2+ (X2Σg, A2Πu) with He
,”
J. Chem. Phys.
100
(
3
),
1953
1967
(
1994
).
51.
D. H.
Katayama
and
A. V.
Dentamaro
, “
Propensities for collision induced electronic transitions in a diatomic molecule
,”
J. Chem. Phys.
85
(
5
),
2595
2598
(
1986
).
52.
D. H.
Katayama
,
T. A.
Miller
, and
V. E.
Bondybey
, “
Radiative decay and radiationless deactivation in selectively excited CN
,”
J. Chem. Phys.
71
(
4
),
1662
1669
(
1979
).
53.
F. C.
Parra-Rojas
,
A.
Luque
, and
F. J.
Gordillo-Vázquez
, “
Chemical and electrical impact of lightning on the Earth mesosphere: The case of sprite halos
,”
J. Geophys. Res.: Space Phys.
118
(
8
),
5190
5214
, (
2013
).
You do not currently have access to this content.