Under isothermal conditions, phase transitions occur through a nucleation event when conditions are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation decreases. This phenomenon occurs both in the bulk and under confinement and leads to a very slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain in a metastable state for a long time. This has broad implications, for instance, when using simulations to predict phase diagrams or screen porous materials for gas storage applications. Here, we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric ensemble (μ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low supersaturation, isothermal simulations converge slowly, while adiabatic simulations exhibit a fast convergence over a wide range of supersaturation. We then focus on adsorption and desorption processes in nanoporous materials, assess the reliability of (μ, V, L) simulations on the adsorption of argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently the equilibrium loading during the adsorption and desorption of argon in MCM-41, a system that exhibits significant hysteresis. We provide quantitative measures of the increased rate of convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature range, leading to a more efficient exploration of the configuration space.

1.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
2020
).
2.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
3.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. Lett.
123
,
195701
(
2019
).
4.
D. N.
Theodorou
,
Ind. Eng. Chem. Res.
49
,
3047
(
2010
).
5.
A.
Vishnyakov
and
A. V.
Neimark
,
J. Chem. Phys.
119
,
9755
(
2003
).
6.
P.
Ravikovitch
,
S. C. O.
Domhnaill
,
A.
Neimark
,
F.
Schueth
, and
K.
Unger
,
Langmuir
11
,
4765
(
1995
).
7.
M.
Jorge
and
N. A.
Seaton
,
Mol. Phys.
100
,
3803
(
2002
).
8.
J.
Puibasset
and
R. J.-M.
Pellenq
,
J. Chem. Phys.
122
,
094704
(
2005
).
9.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
146
,
184104
(
2017
).
10.
C.
Desgranges
and
J.
Delhommelle
,
Langmuir
35
,
15401
(
2019
).
11.
T.
Horikawa
,
D.
Do
, and
D.
Nicholson
,
Adv. Colloid Interface Sci.
169
,
40
(
2011
).
12.
L. F.
Velasco
,
R.
Guillet-Nicolas
,
G.
Dobos
,
M.
Thommes
, and
P.
Lodewyckx
,
Carbon
96
,
753
(
2016
).
13.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
14.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184107
(
2012
).
15.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184108
(
2012
).
16.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
17.
B.
Mazur
,
L.
Firlej
, and
B.
Kuchta
,
ACS Appl. Mater. Interfaces
16
,
25559
(
2024
).
18.
Y. J.
Colón
and
R. Q.
Snurr
,
Chem. Soc. Rev.
43
,
5735
(
2014
).
19.
N. S.
Bobbitt
and
R. Q.
Snurr
,
Mol. Simul.
45
,
1069
(
2019
).
20.
A.
Sturluson
,
M. T.
Huynh
,
A. R.
Kaija
,
C.
Laird
,
S.
Yoon
,
F.
Hou
,
Z.
Feng
,
C. E.
Wilmer
,
Y. J.
Colón
,
Y. G.
Chung
et al,
Mol. Simul.
45
,
1082
(
2019
).
21.
J.
Vicent-Luna
,
A.
Luna-Triguero
, and
S.
Calero
,
J. Phys. Chem. C
120
,
23756
(
2016
).
22.
M. V.
Parkes
,
C. L.
Staiger
,
J. J.
Perry
IV
,
M. D.
Allendorf
, and
J. A.
Greathouse
,
Phys. Chem. Chem. Phys.
15
,
9093
(
2013
).
23.
R. B.
Getman
,
Y.-S.
Bae
,
C. E.
Wilmer
, and
R. Q.
Snurr
,
Chem. Rev.
112
,
703
(
2012
).
24.
M.
Erdős
,
M. F.
De Lange
,
F.
Kapteijn
,
O. A.
Moultos
, and
T. J.
Vlugt
,
ACS Appl. Mater. Interfaces
10
,
27074
(
2018
).
25.
G.
Ercakir
,
G. O.
Aksu
, and
S.
Keskin
,
J. Chem. Phys.
160
,
084706
(
2024
).
26.
W.
Park
,
K. H.
Oh
,
D.
Lee
,
S.-Y.
Kim
, and
Y.-S.
Bae
,
Chem. Eng. J.
452
,
139189
(
2023
).
27.
J.
Haile
and
H.
Graben
,
Mol. Phys.
40
,
1433
(
1980
).
28.
H.
Graben
and
J. R.
Ray
,
Phys. Rev. A
43
,
4100
(
1991
).
30.
M.
Lísal
,
M.
Bendová
, and
W. R.
Smith
,
Fluid Phase Equilib.
235
,
50
(
2005
).
31.
L. D.
Gelb
and
S. N.
Chakraborty
,
J. Chem. Phys.
135
,
224113
(
2011
).
32.
F. A.
Escobedo
,
J. Chem. Phys.
123
,
044110
(
2005
).
33.
F. A.
Escobedo
,
Phys. Rev. E
73
,
056701
(
2006
).
34.
L.
Rosso
,
J. B.
Abrams
, and
M. E.
Tuckerman
,
J. Phys. Chem. B
109
,
4162
(
2005
).
35.
T.
Çagin
and
B. M.
Pettitt
,
Mol. Simul.
6
,
5
(
1991
).
36.
T.
Kristóf
and
J.
Liszi
,
Mol. Phys.
94
,
519
(
1998
).
37.
J. R.
Ray
and
H.
Graben
,
J. Chem. Phys.
93
,
4296
(
1990
).
38.
H.
Graben
and
J. R.
Ray
,
Mol. Phys.
80
,
1183
(
1993
).
39.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
153
,
094114
(
2020
).
40.
P.
Ströker
and
K.
Meier
,
Phys. Rev. E
105
,
035301
(
2022
).
41.
I.
Nitzke
and
J.
Vrabec
,
J. Chem. Theory Comput.
19
,
3460
(
2023
).
42.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
156
,
084113
(
2022
).
43.
E.
Guggenheim
,
J. Chem. Phys.
7
,
103
(
1939
).
44.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Dover Books
,
New York
,
1986
).
45.
C.
Desgranges
and
J.
Delhommelle
,
Molecular Networking: Statistical Mechanics in the Age of AI and Machine Learning
(
CRC Press
,
2024
).
46.
J. R.
Ray
,
H.
Graben
, and
J.
Haile
,
J. Chem. Phys.
75
,
4077
(
1981
).
47.
T.
Çağin
and
B. M.
Pettitt
,
Mol. Phys.
72
,
169
(
1991
).
48.
T.
Kristóf
and
J.
Liszi
,
Chem. Phys. Lett.
261
,
620
(
1996
).
49.
P.
Ströker
and
K.
Meier
,
Phys. Rev. E
107
,
064112
(
2023
).
50.
R.
Lustig
,
J. Chem. Phys.
109
,
8816
(
1998
).
51.
E. M.
Pearson
,
T.
Halicioglu
, and
W. A.
Tiller
,
Phys. Rev. A
32
,
3030
(
1985
).
52.
A. V.
Neimark
,
P. I.
Ravikovitch
, and
A.
Vishnyakov
,
J. Phys.: Condens. Matter
15
,
347
(
2003
).
53.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
54.
M.
Eddaoudi
,
J.
Kim
,
N.
Rosi
,
D.
Vodak
,
J.
Wachter
,
M.
O’Keeffe
, and
O. M.
Yaghi
,
Science
295
,
469
(
2002
).
55.
O. M.
Yaghi
,
M.
O’Keeffe
,
N. W.
Ockwig
,
H. K.
Chae
,
M.
Eddaoudi
, and
J.
Kim
,
Nature
423
,
705
(
2003
).
56.
S.
Kitagawa
,
R.
Kitaura
, and
S.-i.
Noro
,
Angew. Chem., Int. Ed.
43
,
2334
(
2004
).
57.
S.
Keskin
,
J.
Liu
,
R. B.
Rankin
,
J. K.
Johnson
, and
D. S.
Sholl
,
Ind. Eng. Chem. Res.
48
,
2355
(
2009
).
58.
T.
Düren
,
Y.-S.
Bae
, and
R. Q.
Snurr
,
Chem. Soc. Rev.
38
,
1237
(
2009
).
59.
C.
Desgranges
and
J.
Delhommelle
,
Mol. Syst. Des. Eng.
6
,
52
(
2021
).
60.
S. S.
Han
,
H.
Furukawa
,
O. M.
Yaghi
, and
W. A. I.
Goddard
,
J. Am. Chem. Soc.
130
,
11580
(
2008
).
61.
P. J.
Waller
,
F.
Gándara
, and
O. M.
Yaghi
,
Acc. Chem. Res.
48
,
3053
(
2015
).
62.
G.
Garberoglio
,
A. I.
Skoulidas
, and
J. K.
Johnson
,
J. Phys. Chem. B
109
,
13094
(
2005
).
63.
64.
H.
Frost
,
T.
Düren
, and
R. Q.
Snurr
,
J. Phys. Chem. B
110
,
9565
(
2006
).
65.
K. S.
Walton
,
A. R.
Millward
,
D.
Dubbeldam
,
H.
Frost
,
J. J.
Low
,
O. M.
Yaghi
, and
R. Q.
Snurr
,
J. Am. Chem. Soc.
130
,
406
(
2008
).
66.
M.
De Toni
,
P.
Pullumbi
,
F.-X.
Coudert
, and
A. H.
Fuchs
,
J. Phys. Chem. C
114
,
21631
(
2010
).
67.
J. M.
Hicks
,
C.
Desgranges
, and
J.
Delhommelle
,
J. Phys. Chem. C
116
,
22938
(
2012
).
68.
A. R. V.
Koenig
,
C.
Desgranges
, and
J.
Delhommelle
,
Mol. Simul.
40
,
71
(
2014
).
69.
J. A.
Greathouse
,
T. L.
Kinnibrugh
, and
M. D.
Allendorf
,
Ind. Eng. Chem. Res.
48
,
3425
(
2009
).
70.
D.
Banerjee
,
C. M.
Simon
,
A. M.
Plonka
,
R. K.
Motkuri
,
J.
Liu
,
X.
Chen
,
B.
Smit
,
J. B.
Parise
,
M.
Haranczyk
, and
P. K.
Thallapally
,
Nat. Commun.
7
,
ncomms11831
(
2016
).
71.
A. I.
Skoulidas
and
D. S.
Sholl
,
J. Phys. Chem. B
109
,
15760
(
2005
).
72.
Q.
Yang
and
C.
Zhong
,
J. Phys. Chem. B
110
,
17776
(
2006
).
73.
D.
Dubbeldam
,
C. J.
Galvin
,
K. S.
Walton
,
D. E.
Ellis
, and
R. Q.
Snurr
,
J. Am. Chem. Soc.
130
,
10884
(
2008
).
74.
Y.
He
,
W.
Zhou
,
G.
Qian
, and
B.
Chen
,
Chem. Soc. Rev.
43
,
5657
(
2014
).
75.
K.
Gopalsamy
,
C.
Desgranges
, and
J.
Delhommelle
,
J. Phys. Chem. C
121
,
24692
(
2017
).
76.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. C
124
,
1907
(
2020
).
77.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
,
8897
(
1990
).
78.
Y.
Liu
,
D.
Liu
,
Q.
Yang
,
C.
Zhong
, and
J.
Mi
,
Ind. Eng. Chem. Res.
49
,
2902
(
2010
).
79.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
140
,
104109
(
2014
).
80.
B. K.
Peterson
and
K. E.
Gubbins
,
Mol. Phys.
62
,
215
(
1987
).
81.
A.
Vishnyakov
and
A. V.
Neimark
,
Langmuir
19
,
3240
(
2003
).
82.
A. V.
Neimark
and
A.
Vishnyakov
,
J. Chem. Phys.
122
,
054707
(
2005
).
83.
P.
Ravikovitch
,
D.
Wei
,
W.
Chueh
,
G.
Haller
, and
A.
Neimark
,
J. Phys. Chem. B
101
,
3671
(
1997
).
84.
A.
Myers
and
P.
Monson
,
Langmuir
18
,
10261
(
2002
).
85.
T. J.
Boerner
,
S.
Deems
,
T. R.
Furlani
,
S. L.
Knuth
, and
J.
Towns
, in
PEARC ’23 Practice and Experience in Advanced Research Computing
(
Association for Computing Machinery
,
New York
,
2023
), pp.
173
176
, ISBN: 9781450399852.
You do not currently have access to this content.