A recent ground-breaking experimental study [Lyons et al., Phys. Rev. X 14(1), 011017 (2024)] reports on measuring the temporal duration and the spatial extent of failed attempts to cross an activation barrier (i.e., “loops”) for a folding transition in a single molecule and for a Brownian particle trapped within a bistable potential. Within the model of diffusive dynamics, however, both of these quantities are, on average, exactly zero because of the recrossings of the barrier region boundary. That is, an observer endowed with infinite spatial and temporal resolution would find that finite loops do not exist (or, more precisely, form a set of measure zero). Here we develop a description of the experiment that takes the “fuzziness” of the boundaries caused by finite experimental resolution into account and show how the experimental uncertainty of localizing the point, in time and space, where the barrier is crossed leads to observable distributions of loop times and sizes. Although these distributions generally depend on the experimental resolution, this dependence, in certain cases, may amount to a simple resolution-dependent factor and, therefore, the experiments do probe inherent properties of barrier crossing dynamics.

1.
H. S.
Chung
and
W. A.
Eaton
,
Curr. Opin. Struct. Biol.
48
,
30
39
(
2018
).
2.
N. Q.
Hoffer
and
M. T.
Woodside
,
Curr. Opin. Chem. Biol.
53
,
68
74
(
2019
).
3.
A.
Lyons
,
A.
Devi
,
N. Q.
Hoffer
, and
M. T.
Woodside
,
Phys. Rev. X
14
(
1
),
011017
(
2024
).
4.
D. E.
Makarov
,
J. Phys. Chem. B
125
(
10
),
2467
2476
(
2021
).
5.
H. S.
Chung
and
I. V.
Gopich
,
Phys. Chem. Chem. Phys.
16
(
35
),
18644
18657
(
2014
).
7.
A.
Szabo
,
K.
Schulten
, and
Z.
Schulten
,
J. Chem. Phys.
72
,
4350
(
1980
).
8.
N. D.
Socci
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
J. Chem. Phys.
104
,
5860
5868
(
1996
).
9.
D.
Klimov
and
D.
Thirumalai
,
Phys. Rev. Lett.
79
,
317
(
1997
).
10.
K.
Neupane
,
A. P.
Manuel
, and
M.
Woodside
,
Nat. Phys.
12
,
700
703
(
2016
).
11.
A. M.
Berezhkovskii
and
D. E.
Makarov
,
Biophys. Rep.
1
,
100029
(
2021
).
12.
S.
Redner
,
A Guide to First Passage Times
(
Cambridge University Press
,
2001
).
13.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
,
J. Chem. Phys.
147
(
1
),
134104
(
2017
).
14.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
,
J. Phys. Chem. B
121
(
21
),
5455
5460
(
2017
).
15.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
,
J. Phys. Chem. B
123
(
17
),
3786
3796
(
2019
).
16.
A. M.
Berezhkovskii
and
D. E.
Makarov
,
J. Chem. Phys.
148
(
20
),
201102
(
2018
).
17.
T.
Li
,
S.
Kheifets
,
D.
Medellin
, and
M. G.
Raizen
,
Science
328
(
5986
),
1673
1675
(
2010
).
18.
D. A. N.
Foster
,
R.
Petrosyan
,
A. G. T.
Pyo
,
A.
Hoffmann
,
F.
Wang
, and
M. T.
Woodside
,
Biophys. J.
114
(
7
),
1657
1666
(
2018
).
19.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer-Verlag
,
Berlin
,
1983
).
20.
R.
Satija
,
A. M.
Berezhkovskii
, and
D. E.
Makarov
,
Proc. Natl. Acad. Sci. U. S. A.
117
(
44
),
27116
27123
(
2020
).
21.
A. M.
Berezhkovskii
,
G.
Hummer
, and
S. M.
Bezrukov
,
Phys. Rev. Lett.
97
(
2
),
020601
(
2006
).
22.
S.
Chaudhury
and
D. E.
Makarov
,
J. Chem. Phys.
133
,
034118
(
2010
).
23.
D. E.
Makarov
,
Single Molecule Science: Physical Principles and Models
(
CRC Press, Taylor & Francis Group
,
Boca Raton
,
2015
).
24.
A. M.
Berezhkovskii
,
S. M.
Bezrukov
, and
D. E.
Makarov
,
J. Chem. Phys.
154
(
11
),
111101
(
2021
).
25.
D.
Hartich
and
A.
Godec
,
Phys. Rev. X
11
,
041047
(
2021
).
26.
R.
Dutta
and
E.
Pollak
,
Phys. Chem. Chem. Phys.
23
(
41
),
23787
23795
(
2021
).
27.
R.
Dutta
and
E.
Pollak
,
Phys. Chem. Chem. Phys.
24
(
41
),
25373
25382
(
2022
).
28.
A.
Godec
and
D. E.
Makarov
,
J. Phys. Chem. Lett.
14
(
1
),
49
56
(
2023
).
29.
G.
Hummer
,
J. Chem. Phys.
120
,
516
523
(
2004
).
30.
E.
Vanden-Eijnden
, in
Computer Simulations in Condensed Matter: From Materials to Chemical Biology
, edited by
M. M.
Ferrario
,
G.
Ciccotti
, and
K.
Binder
(
Springer
,
2006
).
31.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
126
,
074504
(
2007
).
32.
R.
Elber
,
D. E.
Makarov
, and
H.
Orland
,
Molecular Kinetics in Condense Phases: Theory, Simulation, and Analysis
(
Wiley and Sons
,
2020
).
33.
D. E.
Makarov
,
A. M.
Berezhkovskii
,
G.
Haran
, and
E.
Pollak
,
J. Phys. Chem. B
126
(
40
),
7966
7974
(
2022
).
34.
K.
Song
,
D. E.
Makarov
, and
E.
Vouga
,
J. Chem. Phys.
158
(
11
),
111101
(
2023
).
35.
A.
Kumar
,
Y.
Scher
,
S.
Reuveni
, and
M. S.
Santhanam
,
Phys. Rev. Res.
5
(
3
),
L032043
(
2023
).
You do not currently have access to this content.