Cholesterol (Chol) plays a crucial role in shaping the intricate physicochemical attributes of biomembranes, exerting a considerable influence on water molecules proximal to the membrane interface. In this study, we conducted molecular dynamics simulations on the bilayers of two lipid species, dipalmitoylphosphatidylcholine (DPPC) and palmitoyl sphingomyelin; they are distinct with respect to the structures of the hydrogen-bond (H-bond) acceptors. Our investigation focuses on the dynamic properties and H-bonds of water molecules in the lipid-membrane systems, with a particular emphasis on the influence of Chol at varying temperatures. Notably, in the gel phase at 303 K, the presence of Chol extends the lifetimes of H-bonds of the oxygen atoms acting as H-bond acceptors within DPPC with water molecules by a factor of 1.5–2.5. In the liquid-crystalline phase at 323 K, on the other hand, H-bonding dynamics with lipid membranes remain largely unaffected by Chol. This observed shift in H-bonding states serves as a crucial key to unraveling the subtle control mechanisms governing water dynamics in lipid-membrane systems.

1.
J. F.
Nagle
and
S.
Tristram-Nagle
, “
Structure of lipid bilayers
,”
Biochim. Biophys. Acta, Rev. Biomembr.
1469
,
159
195
(
2000
).
2.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
Burlington, MA
,
2011
).
3.
O. G.
Mouritsen
and
M. J.
Zuckermann
, “
What’s so special about cholesterol?
,”
Lipids
39
,
1101
1113
(
2004
).
4.
F.
de Meyer
and
B.
Smit
, “
Effect of cholesterol on the structure of a phospholipid bilayer
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
3654
3658
(
2009
).
5.
S.-J.
Marrink
,
D. P.
Tieleman
,
A. R.
van Buuren
, and
H. J. C.
Berendsen
, “
Membranes and water: An interesting relationship
,”
Faraday Discuss.
103
,
191
201
(
1996
).
6.
L. R.
Pratt
and
A.
Pohorille
, “
Hydrophobic effects and modeling of biophysical aqueous solution interfaces
,”
Chem. Rev.
102
,
2671
2692
(
2002
).
7.
M. J.
Higgins
,
M.
Polcik
,
T.
Fukuma
,
J. E.
Sader
,
Y.
Nakayama
, and
S. P.
Jarvis
, “
Structured water layers adjacent to biological membranes
,”
Biophys. J.
91
,
2532
2542
(
2006
).
8.
T. M.
Raschke
, “
Water structure and interactions with protein surfaces
,”
Curr. Opin. Struct. Biol.
16
,
152
159
(
2006
).
9.
M. J.
Ziegler
and
P. T.
Vernier
, “
Interface water dynamics and porating electric fields for phospholipid bilayers
,”
J. Phys. Chem. B
112
,
13588
13596
(
2008
).
10.
E. A.
Disalvo
,
F.
Lairion
,
F.
Martini
,
E.
Tymczyszyn
,
M.
Frías
,
H.
Almaleck
, and
G. J.
Gordillo
, “
Structural and functional properties of hydration and confined water in membrane interfaces
,”
Biochim. Biophys. Acta, Biomembr.
1778
,
2655
2670
(
2008
).
11.
C.-Y.
Cheng
,
J.
Varkey
,
M. R.
Ambroso
,
R.
Langen
, and
S.
Han
, “
Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
16838
16843
(
2013
).
12.
H.-X.
Zhou
and
T. A.
Cross
, “
Influences of membrane mimetic environments on membrane protein structures
,”
Annu. Rev. Biophys.
42
,
361
392
(
2013
).
13.
Membrane Hydration: The Role of Water in the Structure and Function of Biological Membranes
,
Subcellular Biochemistry Vol. 71
, edited by
E. A.
Disalvo
(
Springer
,
Cham
,
2015
).
14.
P.
Jungwirth
, “
Biological water or rather water in biology?
,”
J. Phys. Chem. Lett.
6
,
2449
2451
(
2015
).
15.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Water dynamics in the hydration shells of biomolecules
,”
Chem. Rev.
117
,
10694
10725
(
2017
).
16.
M.
Chattopadhyay
,
E.
Krok
,
H.
Orlikowska
,
P.
Schwille
,
H. G.
Franquelim
, and
L.
Piatkowski
, “
Hydration layer of only a few molecules controls lipid mobility in biomimetic membranes
,”
J. Am. Chem. Soc.
143
,
14551
14562
(
2021
).
17.
M. L.
Berkowitz
and
K.
Raghavan
, “
Computer simulation of a water/membrane interface
,”
Langmuir
7
,
1042
1044
(
1991
).
18.
R. W.
Pastor
, “
Molecular dynamics and Monte Carlo simulations of lipid bilayers
,”
Curr. Opin. Struct. Biol.
4
,
486
492
(
1994
).
19.
S.-J.
Marrink
and
H. J. C.
Berendsen
, “
Simulation of water transport through a lipid membrane
,”
J. Phys. Chem.
98
,
4155
4168
(
1994
).
20.
F.
Zhou
and
K.
Schulten
, “
Molecular dynamics study of a membrane-water interface
,”
J. Phys. Chem.
99
,
2194
2207
(
1995
).
21.
E.
Jakobsson
, “
Computer simulation studies of biological membranes: Progress, promise and pitfalls
,”
Trends Biochem. Sci.
22
,
339
344
(
1997
).
22.
S. A.
Pandit
,
D.
Bostick
, and
M. L.
Berkowitz
, “
An algorithm to describe molecular scale rugged surfaces and its application to the study of a water/lipid bilayer interface
,”
J. Chem. Phys.
119
,
2199
2205
(
2003
).
23.
M. L.
Berkowitz
,
D. L.
Bostick
, and
S.
Pandit
, “
Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations
,”
Chem. Rev.
106
,
1527
1539
(
2006
).
24.
N.
Matubayasi
,
W.
Shinoda
, and
M.
Nakahara
, “
Free-energy analysis of the molecular binding into lipid membrane with the method of energy representation
,”
J. Chem. Phys.
128
,
195107
(
2008
).
25.
S. J.
Marrink
,
V.
Corradi
,
P. C.
Souza
,
H. I.
Ingólfsson
,
D. P.
Tieleman
, and
M. S.
Sansom
, “
Computational modeling of realistic cell membranes
,”
Chem. Rev.
119
,
6184
6226
(
2019
).
26.
K.
Karathanou
and
A.-N.
Bondar
, “
Algorithm to catalogue topologies of dynamic lipid hydrogen-bond networks
,”
Biochim. Biophys. Acta, Biomembr.
1864
,
183859
(
2022
).
27.
H. E.
Alper
,
D.
Bassolino-Klimas
, and
T. R.
Stouch
, “
The limiting behavior of water hydrating a phospholipid monolayer: A computer simulation study
,”
J. Chem. Phys.
99
,
5547
5559
(
1993
).
28.
M.
Pasenkiewicz-Gierula
,
Y.
Takaoka
,
H.
Miyagawa
,
K.
Kitamura
, and
A.
Kusumi
, “
Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics Simulation: Location, geometry, and lipid–lipid bridging via hydrogen-bonded water
,”
J. Phys. Chem. A
101
,
3677
3691
(
1997
).
29.
S. E.
Feller
, “
Molecular dynamics simulations of lipid bilayers
,”
Curr. Opin. Colloid Interface Sci.
5
,
217
223
(
2000
).
30.
C. F.
Lopez
,
S. O.
Nielsen
,
M. L.
Klein
, and
P. B.
Moore
, “
Hydrogen bonding structure and dynamics of water at the dimyristoylphosphatidylcholine lipid bilayer surface from a molecular dynamics simulation
,”
J. Phys. Chem. B
108
,
6603
6610
(
2004
).
31.
S. Y.
Bhide
and
M. L.
Berkowitz
, “
Structure and dynamics of water at the interface with phospholipid bilayers
,”
J. Chem. Phys.
123
,
224702
(
2005
).
32.
V. V.
Volkov
,
F.
Nuti
,
Y.
Takaoka
,
R.
Chelli
,
A. M.
Papini
, and
R.
Righini
, “
Hydration and hydrogen bonding of carbonyls in dimyristoyl-phosphatidylcholine bilayer
,”
J. Am. Chem. Soc.
128
,
9466
9471
(
2006
).
33.
Y.
von Hansen
,
S.
Gekle
, and
R. R.
Netz
, “
Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes
,”
Phys. Rev. Lett.
111
,
118103
(
2013
).
34.
A.
Srivastava
and
A.
Debnath
, “
Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations
,”
J. Chem. Phys.
148
,
094901
(
2018
).
35.
C.
Calero
and
G.
Franzese
, “
Membranes with different hydration levels: The interface between bound and unbound hydration water
,”
J. Mol. Liq.
273
,
488
496
(
2019
).
36.
E.
Lee
,
A.
Kundu
,
J.
Jeon
, and
M.
Cho
, “
Water hydrogen-bonding structure and dynamics near lipid multibilayer surface: Molecular dynamics simulation study with direct experimental comparison
,”
J. Chem. Phys.
151
,
114705
(
2019
).
37.
X.
An
,
A.
Majumder
,
J.
McNeely
,
J.
Yang
,
T.
Puri
,
Z.
He
,
T.
Liang
,
J. K.
Snyder
,
J. E.
Straub
, and
B. M.
Reinhard
, “
Interfacial hydration determines orientational and functional dimorphism of sterol-derived Raman tags in lipid-coated nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2105913118
(
2021
).
38.
Y.
Higuchi
,
Y.
Asano
,
T.
Kuwahara
, and
M.
Hishida
, “
Rotational dynamics of water at the phospholipid bilayer depending on the head groups studied by molecular dynamics simulations
,”
Langmuir
37
,
5329
5338
(
2021
).
39.
S.
Malik
and
A.
Debnath
, “
Dehydration induced dynamical heterogeneity and ordering mechanism of lipid bilayers
,”
J. Chem. Phys.
154
,
174904
(
2021
).
40.
S.
Malik
,
S.
Karmakar
, and
A.
Debnath
, “
Relaxation time scales of interfacial water upon fluid to ripple to gel phase transitions of bilayers
,”
J. Chem. Phys.
158
,
114503
(
2023
).
41.
K.
Tu
,
M. L.
Klein
, and
D. J.
Tobias
, “
Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer
,”
Biophys. J.
75
,
2147
2156
(
1998
).
42.
S. W.
Chiu
,
E.
Jakobsson
,
R. J.
Mashl
, and
H. L.
Scott
, “
Cholesterol-induced modifications in lipid bilayers: A simulation study
,”
Biophys. J.
83
,
1842
1853
(
2002
).
43.
C.
Hofsäß
,
E.
Lindahl
, and
O.
Edholm
, “
Molecular dynamics simulations of phospholipid bilayers with cholesterol
,”
Biophys. J.
84
,
2192
2206
(
2003
).
44.
S. A.
Pandit
,
D.
Bostick
, and
M. L.
Berkowitz
, “
Complexation of phosphatidylcholine lipids with cholesterol
,”
Biophys. J.
86
,
1345
1356
(
2004
).
45.
M.
Alwarawrah
,
J.
Dai
, and
J.
Huang
, “
A molecular view of the cholesterol condensing effect in DOPC lipid bilayers
,”
J. Phys. Chem. B
114
,
7516
7523
(
2010
).
46.
H.
Saito
and
W.
Shinoda
, “
Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: A molecular dynamics study
,”
J. Phys. Chem. B
115
,
15241
15250
(
2011
).
47.
A. J.
Sodt
,
R. W.
Pastor
, and
E.
Lyman
, “
Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin
,”
Biophys. J.
109
,
948
955
(
2015
).
48.
C. T.
Boughter
,
V.
Monje-Galvan
,
W.
Im
, and
J. B.
Klauda
, “
Influence of cholesterol on phospholipid bilayer structure and dynamics
,”
J. Phys. Chem. B
120
,
11761
11772
(
2016
).
49.
M. D.
Elola
and
J.
Rodriguez
, “
Influence of cholesterol on the dynamics of hydration in phospholipid bilayers
,”
J. Phys. Chem. B
122
,
5897
5907
(
2018
).
50.
G. A.
Pantelopulos
and
J. E.
Straub
, “
Regimes of complex lipid bilayer phases induced by cholesterol concentration in MD simulation
,”
Biophys. J.
115
,
2167
2178
(
2018
).
51.
C.
Päslack
,
J. C.
Smith
,
M.
Heyden
, and
L. V.
Schäfer
, “
Hydration-mediated stiffening of collective membrane dynamics by cholesterol
,”
Phys. Chem. Chem. Phys.
21
,
10370
10376
(
2019
).
52.
P.
Kumari
,
M.
Kumari
, and
H. K.
Kashyap
, “
Counter-effects of ethanol and cholesterol on the heterogeneous PSM–POPC lipid membrane: A molecular dynamics simulation study
,”
J. Phys. Chem. B
123
,
9616
9628
(
2019
).
53.
M. R.
Elkins
,
A.
Bandara
,
G. A.
Pantelopulos
,
J. E.
Straub
, and
M.
Hong
, “
Direct observation of cholesterol dimers and tetramers in lipid bilayers
,”
J. Phys. Chem. B
125
,
1825
1837
(
2021
).
54.
H. S.
Antila
,
A.
Wurl
,
O. S.
Ollila
,
M. S.
Miettinen
, and
T. M.
Ferreira
, “
Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes
,”
Biophys. J.
121
,
68
78
(
2022
).
55.
C.-Y.
Cheng
,
L. L. C.
Olijve
,
R.
Kausik
, and
S.
Han
, “
Cholesterol enhances surface water diffusion of phospholipid bilayers
,”
J. Chem. Phys.
141
,
22D513
(
2014
).
56.
S.
Pyne
,
P.
Pyne
, and
R. K.
Mitra
, “
Addition of cholesterol alters the hydration at the surface of model lipids: A spectroscopic investigation
,”
Phys. Chem. Chem. Phys.
24
,
20381
20389
(
2022
).
57.
M. I.
Oh
,
C. I.
Oh
, and
D. F.
Weaver
, “
Effect of cholesterol on the structure of networked water at the surface of a model lipid membrane
,”
J. Phys. Chem. B
124
,
3686
3694
(
2020
).
58.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
, “
CHARMM-GUI: A web-based graphical user interface for CHARMM
,”
J. Comput. Chem.
29
,
1859
1865
(
2008
).
59.
S.
Jo
,
J. B.
Lim
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes
,”
Biophys. J.
97
,
50
58
(
2009
).
60.
B. R.
Brooks
,
C. L.
Brooks
,
A. D.
Mackerell
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K.
Kuczera
,
T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
61.
E. L.
Wu
,
X.
Cheng
,
S.
Jo
,
H.
Rui
,
K. C.
Song
,
E. M.
Dávila-Contreras
,
Y.
Qi
,
J.
Lee
,
V.
Monje-Galvan
,
R. M.
Venable
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI membrane builder toward realistic biological membrane simulations
,”
J. Comput. Chem.
35
,
1997
2004
(
2014
).
62.
J.
Lee
,
X.
Cheng
,
J. M.
Swails
,
M. S.
Yeom
,
P. K.
Eastman
,
J. A.
Lemkul
,
S.
Wei
,
J.
Buckner
,
J. C.
Jeong
,
Y.
Qi
,
S.
Jo
,
V. S.
Pande
,
D. A.
Case
,
C. L.
Brooks
,
A. D.
MacKerell
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
,”
J. Chem. Theory Comput.
12
,
405
413
(
2016
).
63.
J.
Huang
and
A. D.
MacKerell
, Jr.
, “
CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data
,”
J. Comput. Chem.
34
,
2135
2145
(
2013
).
64.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
65.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
66.
A. P.
Willard
and
D.
Chandler
, “
Instantaneous liquid interfaces
,”
J. Phys. Chem. B
114
,
1954
1958
(
2010
).
67.
A.
Luzar
and
D.
Chandler
, “
Effect of environment on hydrogen bond dynamics in liquid water
,”
Phys. Rev. Lett.
76
,
928
931
(
1996
).
68.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
57
(
1996
).
69.
D.
Laage
and
J. T.
Hynes
, “
A molecular jump mechanism of water reorientation
,”
Science
311
,
832
835
(
2006
).
70.
R.
Kumar
,
J. R.
Schmidt
, and
J. L.
Skinner
, “
Hydrogen bonding definitions and dynamics in liquid water
,”
J. Chem. Phys.
126
,
204107
(
2007
).
71.
T.
Kikutsuji
,
K.
Kim
, and
N.
Matubayasi
, “
How do hydrogen bonds break in supercooled water?: Detecting pathways not going through saddle point of two-dimensional potential of mean force
,”
J. Chem. Phys.
148
,
244501
(
2018
).
72.
T.
Kikutsuji
,
K.
Kim
, and
N.
Matubayasi
, “
Consistency of geometrical definitions of hydrogen bonds based on the two-dimensional potential of mean force with respect to the time correlation in liquid water over a wide range of temperatures
,”
J. Mol. Liq.
294
,
111603
(
2019
).
73.
T.
Kikutsuji
,
K.
Kim
, and
N.
Matubayasi
, “
Transition pathway of hydrogen bond switching in supercooled water analyzed by the Markov state model
,”
J. Chem. Phys.
154
,
234501
(
2021
).
74.
K.
Shikata
,
T.
Kikutsuji
,
N.
Yasoshima
,
K.
Kim
, and
N.
Matubayasi
, “
Revealing the hidden dynamics of confined water in acrylate polymers: Insights from hydrogen-bond lifetime analysis
,”
J. Chem. Phys.
158
,
174901
(
2023
).
75.
D.
Rapaport
, “
Hydrogen bonds in water: Network organization and lifetimes
,”
Mol. Phys.
50
,
1151
1162
(
1983
).
76.
B.
Efron
, “
Bootstrap methods: Another look at the jackknife
,” in
Breakthroughs in Statistics
, edited by
S.
Kotz
and
N. L.
Johnson
(
Springer
,
New York
,
1992
), pp.
569
593
.
You do not currently have access to this content.