The generation of exciton–polaritons through strong light–matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton–polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry–Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum–classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies.

1.
J.
Wen
,
H.
Wang
,
W.
Wang
,
Z.
Deng
,
C.
Zhuang
,
Y.
Zhang
,
F.
Liu
,
J.
She
,
J.
Chen
,
H.
Chen
et al, “
Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals
,”
Nano Lett.
17
,
4689
4697
(
2017
).
2.
S.
Ghosh
,
R.
Su
,
J.
Zhao
,
A.
Fieramosca
,
J.
Wu
,
T.
Li
,
Q.
Zhang
,
F.
Li
,
Z.
Chen
,
T.
Liew
et al, “
Microcavity exciton polaritons at room temperature
,”
Photonics Insights
1
,
R04
(
2022
).
3.
Y.
Chen
,
D.
Sharp
,
A.
Saxena
,
H.
Nguyen
,
B. M.
Cossairt
, and
A.
Majumdar
, “
Integrated quantum nanophotonics with solution-processed materials
,”
Adv. Quantum Technol.
5
,
2100078
(
2022
).
4.
D. E.
Chang
,
V.
Vuletić
, and
M. D.
Lukin
, “
Quantum nonlinear optics—Photon by photon
,”
Nat. Photonics
8
,
685
694
(
2014
).
5.
L.-M.
Duan
and
H.
Kimble
, “
Scalable photonic quantum computation through cavity-assisted interactions
,”
Phys. Rev. Lett.
92
,
127902
(
2004
).
6.
I.
Carusotto
and
C.
Ciuti
, “
Quantum fluids of light
,”
Rev. Mod. Phys.
85
,
299
(
2013
).
7.
W.
Hu
,
I.
Gustin
,
T. D.
Krauss
, and
I.
Franco
, “
Tuning and enhancing quantum coherence time scales in molecules via light-matter hybridization
,”
J. Phys. Chem. Lett.
13
,
11503
11511
(
2022
).
8.
E.
Rozas
,
M.
Martín
,
C.
Tejedor
,
L.
Viña
,
G.
Deligeorgis
,
Z.
Hatzopoulos
, and
P.
Savvidis
, “
Temperature dependence of the coherence in polariton condensates
,”
Phys. Rev. B
97
,
075442
(
2018
).
9.
K.
Hao
,
G.
Moody
,
F.
Wu
,
C. K.
Dass
,
L.
Xu
,
C.-H.
Chen
,
L.
Sun
,
M.-Y.
Li
,
L.-J.
Li
,
A. H.
MacDonald
, and
X.
Li
, “
Direct measurement of exciton valley coherence in monolayer WSe2
,”
Nat. Phys.
12
,
677
682
(
2016
).
10.
D.
Sanvitto
and
S.
Kéna-Cohen
, “
The road towards polaritonic devices
,”
Nat. Mater.
15
,
1061
1073
(
2016
).
11.
T.
Volz
,
A.
Reinhard
,
M.
Winger
,
A.
Badolato
,
K. J.
Hennessy
,
E. L.
Hu
, and
A.
Imamoğlu
, “
Ultrafast all-optical switching by single photons
,”
Nat. Photonics
6
,
605
609
(
2012
).
12.
W.
Chen
,
K. M.
Beck
,
R.
Bücker
,
M.
Gullans
,
M. D.
Lukin
,
H.
Tanji-Suzuki
, and
V.
Vuletić
, “
All-optical switch and transistor gated by one stored photon
,”
Science
341
,
768
770
(
2013
).
13.
R.
Su
,
J.
Wang
,
J.
Zhao
,
J.
Xing
,
W.
Zhao
,
C.
Diederichs
,
T. C.
Liew
, and
Q.
Xiong
, “
Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites
,”
Sci. Adv.
4
,
eaau0244
(
2018
).
14.
R.
Su
,
S.
Ghosh
,
J.
Wang
,
S.
Liu
,
C.
Diederichs
,
T. C.
Liew
, and
Q.
Xiong
, “
Observation of exciton polariton condensation in a perovskite lattice at room temperature
,”
Nat. Phys.
16
,
301
306
(
2020
).
15.
J.
Wu
,
S.
Ghosh
,
R.
Su
,
A.
Fieramosca
,
T. C.
Liew
, and
Q.
Xiong
, “
Nonlinear parametric scattering of exciton polaritons in perovskite microcavities
,”
Nano Lett.
21
,
3120
3126
(
2021
).
16.
Z.
Zhen
,
S.-Y.
Jin
,
R.
Jie
,
H.-Y.
Liang
, and
X.-S.
Xu
, “
Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature
,”
Photonics Res.
10
,
913
921
(
2022
).
17.
D.
Dovzhenko
,
M.
Lednev
,
K.
Mochalov
,
I.
Vaskan
,
P.
Samokhvalov
,
Y.
Rakovich
, and
I.
Nabiev
, “
Strong exciton–photon coupling with colloidal quantum dots in a tunable microcavity
,”
Appl. Phys. Lett.
119
,
011102
(
2021
).
18.
K.
Peng
and
E.
Rabani
, “
Polaritonic bottleneck in colloidal quantum dots
,”
Nano Lett.
23
,
10587
10593
(
2023
).
19.
N. C.
Giebink
,
G. P.
Wiederrecht
, and
M. R.
Wasielewski
, “
Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity
,”
Appl. Phys. Lett.
98
,
081103
(
2011
).
20.
X.
Xu
and
S.
Jin
, “
Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature
,”
Sci. Adv.
6
,
eabb3095
(
2020
).
21.
K.
Gong
,
Y.
Zeng
, and
D. F.
Kelley
, “
Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals
,”
J. Phys. Chem. C
117
,
20268
20279
(
2013
).
22.
S.
Ithurria
and
B.
Dubertret
, “
Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level
,”
J. Am. Chem. Soc.
130
,
16504
16505
(
2008
).
23.
S.
Ithurria
,
M.
Tessier
,
B.
Mahler
,
R.
Lobo
,
B.
Dubertret
, and
A. L.
Efros
, “
Colloidal nanoplatelets with two-dimensional electronic structure
,”
Nat. Mater.
10
,
936
941
(
2011
).
24.
M. D.
Tessier
,
C.
Javaux
,
I.
Maksimovic
,
V.
Loriette
, and
B.
Dubertret
, “
Spectroscopy of single CdSe nanoplatelets
,”
ACS Nano
6
,
6751
6758
(
2012
).
25.
J. M.
Winkler
,
F. T.
Rabouw
,
A. A.
Rossinelli
,
S. V.
Jayanti
,
K. M.
McPeak
,
D. K.
Kim
,
B.
Le Feber
,
F.
Prins
, and
D. J.
Norris
, “
Room-temperature strong coupling of CdSe nanoplatelets and plasmonic hole arrays
,”
Nano Lett.
19
,
108
115
(
2018
).
26.
I.
Shlesinger
,
H.
Monin
,
J.
Moreau
,
J.-P.
Hugonin
,
M.
Dufour
,
S.
Ithurria
,
B.
Vest
, and
J.-J.
Greffet
, “
Strong coupling of nanoplatelets and surface plasmons on a gold surface
,”
ACS Photonics
6
,
2643
2648
(
2019
).
27.
M.
Oda
,
K.
Yamato
,
J.
Egashira
, and
H.
Kondo
, “
Room-temperature strong coupling of hexane-dispersed colloidal CdSe nanoplatelets in a microcavity composed of two Bragg reflectors
,” arXiv:2309.04743 (
2023
).
28.
M. L.
Steigerwald
and
L. E.
Brus
, “
Semiconductor crystallites: A class of large molecules
,”
Acc. Chem. Res.
23
,
183
188
(
1990
).
29.
Y.
Gao
,
M. C.
Weidman
, and
W. A.
Tisdale
, “
CdSe nanoplatelet films with controlled orientation of their transition dipole moment
,”
Nano Lett.
17
,
3837
3843
(
2017
).
30.
B. T.
Diroll
and
R. D.
Schaller
, “
Reexamination of the giant oscillator strength effect in CdSe nanoplatelets
,”
J. Phys. Chem. C
127
,
4601
4608
(
2023
).
31.
E. V.
Shornikova
,
D. R.
Yakovlev
,
N. A.
Gippius
,
G.
Qiang
,
B.
Dubertret
,
A. H.
Khan
,
A.
Di Giacomo
,
I.
Moreels
, and
M.
Bayer
, “
Exciton binding energy in CdSe nanoplatelets measured by one- and two-photon absorption
,”
Nano Lett.
21
,
10525
10531
(
2021
).
32.
B.
Li
,
S.
Zu
,
Z.
Zhang
,
L.
Zheng
,
Q.
Jiang
,
B.
Du
,
Y.
Luo
,
Y.
Gong
,
Y.
Zhang
,
F.
Lin
et al, “
Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature
,”
Opto-Electron. Adv.
2
,
190008
(
2019
).
33.
L.
Qiu
,
A.
Mandal
,
O.
Morshed
,
M. T.
Meidenbauer
,
W.
Girten
,
P.
Huo
,
A. N.
Vamivakas
, and
T. D.
Krauss
, “
Molecular polaritons generated from strong coupling between CdSe nanoplatelets and a dielectric optical cavity
,”
J. Phys. Chem. Lett.
12
,
5030
5038
(
2021
).
34.
A.
Mandal
,
M. A.
Taylor
,
B. M.
Weight
,
E. R.
Koessler
,
X.
Li
, and
P.
Huo
, “
Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics
,”
Chem. Rev.
123
,
9786
9879
(
2023
).
35.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2014
).
36.
D. G.
Lidzey
,
D.
Bradley
,
M.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D.
Whittaker
, “
Strong exciton–photon coupling in an organic semiconductor microcavity
,”
Nature
395
,
53
55
(
1998
).
37.
V.
Savona
, “
Fifteen years of microcavity polaritons
,” The physics of semiconductor microcavities (
2007
).
38.
W.
Chiang
,
O.
Morshed
, and
T.
Krauss
,
Quantum Confined Semiconductor Nanocrystals
(
American Chemical Society
,
2023
).
39.
M.
Tavis
and
F. W.
Cummings
, “
Exact solution for an N-molecule—Radiation-field Hamiltonian
,”
Phys. Rev.
170
,
379
(
1968
).
40.
G.
Khitrova
,
H.
Gibbs
,
M.
Kira
,
S. W.
Koch
, and
A.
Scherer
, “
Vacuum rabi splitting in semiconductors
,”
Nat. Phys.
2
,
81
90
(
2006
).
41.
A. A.
Rossinelli
,
A.
Riedinger
,
P.
Marqués-Gallego
,
P. N.
Knüsel
,
F. V.
Antolinez
, and
D. J.
Norris
, “
High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets
,”
Chem. Commun.
53
,
9938
9941
(
2017
).
42.
M. I.
Vasilevskiy
,
D. G.
Santiago-Pérez
,
C.
Trallero-Giner
,
N. M.
Peres
, and
A.
Kavokin
, “
Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates
,”
Phys. Rev. B
92
,
245435
(
2015
).
43.
D.
Lidzey
,
D.
Bradley
,
T.
Virgili
,
A.
Armitage
,
M.
Skolnick
, and
S.
Walker
, “
Room temperature polariton emission from strongly coupled organic semiconductor microcavities
,”
Phys. Rev. Lett.
82
,
3316
(
1999
).
44.
P.
Geiregat
,
C.
Rodá
,
I.
Tanghe
,
S.
Singh
,
A.
Di Giacomo
,
D.
Lebrun
,
G.
Grimaldi
,
J.
Maes
,
D.
Van Thourhout
,
I.
Moreels
et al, “
Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced Stark effect
,”
Light: Sci. Appl.
10
,
112
(
2021
).
45.
J.
Fregoni
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Theoretical challenges in polaritonic chemistry
,”
ACS Photonics
9
,
1096
1107
(
2022
).
46.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
47.
M.
Amin
,
E. R.
Koessler
,
O.
Morshed
,
F.
Awan
,
N. M.
Cogan
,
R.
Collison
,
W.
Girten
,
C. S.
Leiter
,
A. N.
Vamivakas
,
P.
Huo
, and
T. D.
Krauss
, “
Cavity Controlled Upconversion in CdSe Nanoplatelet Polaritons
,” ChemRxiv:2023-4tshv-v2 (
2024
).
48.
J. E.
Runeson
and
D. E.
Manolopoulos
, “
A multi-state mapping approach to surface hopping
,”
J. Chem. Phys.
159
,
094115
(
2023
).
49.
R. H.
Tichauer
,
J.
Feist
, and
G.
Groenhof
, “
Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation
,”
J. Chem. Phys.
154
,
104112
(
2021
).
50.
K. B.
Arnardottir
,
A. J.
Moilanen
,
A.
Strashko
,
P.
Törmä
, and
J.
Keeling
, “
Multimode organic polariton lasing
,”
Phys. Rev. Lett.
125
,
233603
(
2020
).
51.
A. M.
Berghuis
,
R. H.
Tichauer
,
L. M. A.
de Jong
,
I.
Sokolovskii
,
P.
Bai
,
M.
Ramezani
,
S.
Murai
,
G.
Groenhof
, and
J.
Gómez Rivas
, “
Controlling exciton propagation in organic crystals through strong coupling to plasmonic nanoparticle arrays
,”
ACS Photonics
9
,
2263
2272
(
2022
).
52.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against fermi’s golden rule rate
,”
J. Chem. Phys.
156
,
134106
(
2022
).
53.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
,
100902
(
2020
).
54.
C.
López
,
H.
Christ
,
J.
Retamal
, and
E.
Solano
, “
Effective quantum dynamics of interacting systems with inhomogeneous coupling
,”
Phys. Rev. A
75
,
033818
(
2007
).
55.
F.
Spano
, “
Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates
,”
J. Chem. Phys.
142
,
184707
(
2015
).
56.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
57.
F.
Fassioli
,
K. H.
Park
,
S. E.
Bard
, and
G. D.
Scholes
, “
Femtosecond photophysics of molecular polaritons
,”
J. Phys. Chem. Lett.
12
,
11444
11459
(
2021
).
58.
G. D.
Scholes
,
C. A.
DelPo
, and
B.
Kudisch
, “
Entropy reorders polariton states
,”
J. Phys. Chem. Lett.
11
,
6389
6395
(
2020
).
59.
B.
Xiang
,
R. F.
Ribeiro
,
L.
Chen
,
J.
Wang
,
M.
Du
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
State-selective polariton to dark state relaxation dynamics
,”
J. Phys. Chem. A
123
,
5918
5927
(
2019
).
60.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
A. M.
Adawi
, and
D. G.
Lidzey
, “
Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity
,”
Phys. Rev. B
84
,
205214
(
2011
).
61.
F. C.
Spano
, “
The spectral signatures of Frenkel Polarons in H- and J-aggregates
,”
Acc. Chem. Res.
43
,
429
439
(
2010
).
62.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
63.
N.
Shammah
,
N.
Lambert
,
F.
Nori
, and
S.
De Liberato
, “
Superradiance with local phase-breaking effects
,”
Phys. Rev. A
96
,
023863
(
2017
).
64.
R.
Bhuyan
,
J.
Mony
,
O.
Kotov
,
G. W.
Castellanos
,
J.
Gômez Rivas
,
T. O.
Shegai
, and
K.
Börjesson
, “
The rise and current status of polaritonic photochemistry and photophysics
,”
Chem. Rev.
123
,
10877
(
2023
).
65.
F.
Tassone
,
C.
Piermarocchi
,
V.
Savona
,
A.
Quattropani
, and
P.
Schwendimann
, “
Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons
,”
Phys. Rev. B
56
,
7554
(
1997
).
66.
M.
Laitz
,
A. E.
Kaplan
,
J.
Deschamps
,
U.
Barotov
,
A. H.
Proppe
,
I.
García-Benito
,
A.
Osherov
,
G.
Grancini
,
D. W.
deQuilettes
,
K. A.
Nelson
et al, “
Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites
,”
Nat. Commun.
14
,
2426
(
2023
).
67.
Y.
Sun
,
Y.
Yoon
,
M.
Steger
,
G.
Liu
,
L. N.
Pfeiffer
,
K.
West
,
D. W.
Snoke
, and
K. A.
Nelson
, “
Direct measurement of polariton–polariton interaction strength
,”
Nat. Phys.
13
,
870
875
(
2017
).
68.
S.
Utsunomiya
,
L.
Tian
,
G.
Roumpos
,
C.
Lai
,
N.
Kumada
,
T.
Fujisawa
,
M.
Kuwata-Gonokami
,
A.
Löffler
,
S.
Höfling
,
A.
Forchel
, and
Y.
Yamamoto
, “
Observation of bogoliubov excitations in exciton-polariton condensates
,”
Nat. Phys.
4
,
700
705
(
2008
).
69.
A. F.
Vong
,
S.
Irgen-Gioro
,
Y.
Wu
, and
E. A.
Weiss
, “
Origin of low temperature trion emission in CdSe nanoplatelets
,”
Nano Lett.
21
,
10040
10046
(
2021
).
70.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
71.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
719
(
2014
).
72.
A.
Mandal
,
T. D.
Krauss
, and
P.
Huo
, “
Polariton-mediated electron transfer via cavity quantum electrodynamics
,”
J. Phys. Chem. B
124
,
6321
6340
(
2020
).
73.
D.
Jasrasaria
and
E.
Rabani
, “
Circumventing the phonon bottleneck by multiphonon-mediated hot exciton cooling at the nanoscale
,”
npj Comput. Mater.
9
,
145
(
2023
).
74.
J. R.
Mannouch
and
J. O.
Richardson
, “
A mapping approach to surface hopping
,”
J. Chem. Phys.
158
,
104111
(
2023
).
75.
E. R.
Koessler
,
A.
Mandal
, and
P.
Huo
, “
Incorporating Lindblad decay dynamics into mixed quantum-classical simulations
,”
J. Chem. Phys.
157
,
064101
(
2022
).
You do not currently have access to this content.