Conductive-bridge random access memory can be used as a physical reservoir for temporal learning in reservoir computing owing to its volatile nature. Herein, a scaled Cu/HfOx/n+-Si memristor was fabricated and characterized for reservoir computing. The scaled, silicon nanofin bottom electrode formation is verified by scanning electron and transmission electron microscopy. The scaled device shows better cycle-to-cycle switching variability characteristics compared with those of large-sized cells. In addition, synaptic characteristics such as conductance changes due to pulses, paired-pulse facilitation, and excitatory postsynaptic currents are confirmed in the scaled memristor. High-pattern accuracy is demonstrated by deep neural networks applied in neuromorphic systems in conjunction with the use of the Modified National Institute of Standards and Technology database. Furthermore, a reservoir computing system is introduced with six different states attained by adjusting the amplitude of the input pulse. Finally, high-performance and efficient volatile reservoir computing in the scaled device is demonstrated by conductance control and system-level reservoir computing simulations.

1.
F.
Zahoor
,
T. Z.
Azni Zulkifli
, and
F. A.
Khanday
, “
Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications
,”
Nanoscale Res. Lett.
15
,
90
(
2020
).
2.
P. S.
Pawar
,
R. S.
Tikke
,
V. B.
Patil
,
N. B.
Mullani
,
P. P.
Waifalkar
,
K. V.
Khot
,
A. M.
Teli
,
A. D.
Sheikh
, and
T. D.
Dongale
, “
A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method
,”
Mater. Sci. Semicond. Process.
71
,
102
108
(
2017
).
3.
W. S.
Zhao
,
T.
Devolder
,
Y.
Lakys
,
J. O.
Klein
,
C.
Chappert
, and
P.
Mazoyer
, “
Design considerations and strategies for high-reliable STT-MRAM
,”
Microelectron. Reliab.
51
,
1454
1458
(
2011
).
4.
S.
Mueller
,
S. R.
Summerfelt
,
J.
Müller
,
U.
Schroeder
, and
T.
Mikolajick
, “
Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors
,”
IEEE Electron Device Lett.
33
(
9
),
1300
1302
(
2012
).
5.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
(
11
),
833
840
(
2007
).
6.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
, “
Emerging memories: Resistive switching mechanisms and current status
,”
Rep. Prog. Phys.
75
(
7
),
076502
(
2012
).
7.
M.
Di Ventra
and
Y. V.
Pershin
, “
Memory materials: A unifying description
,”
Mater. Today
14
(
12
),
584
591
(
2011
).
8.
J.
Park
and
S.
Kim
, “
Improving endurance and reliability by optimizing the alternating voltage in Pt/ZnO/TiN RRAM
,”
Results Phys.
39
,
105731
(
2022
).
9.
Y.
Abbas
,
S. M.
Ansari
,
I.
Taha
,
H.
Abunahla
,
M. U.
Khan
,
M.
Rezeq
,
H. M.
Aldosari
, and
B.
Mohammad
, “
Stopping voltage-dependent PCM and RRAM-based neuromorphic characteristics of germanium telluride
,”
Adv. Funct. Mater.
34
,
2214615
(
2023
).
10.
M. U.
Khan
,
Y.
Abbas
,
M.
Rezeq
,
A.
Alazzam
, and
B.
Mohammad
, “
Unidirectional neuromorphic resistive memory integrated with piezoelectric nanogenerator for self-power electronics
,”
Adv. Funct. Mater.
34
,
2305869
(
2024
).
11.
K.
Moon
,
S.
Lim
,
J.
Park
,
C.
Sung
,
S.
Oh
,
J.
Woo
,
J.
Lee
, and
H.
Hwang
, “
RRAM-based synapse devices for neuromorphic systems
,”
Faraday Discuss.
213
,
421
451
(
2019
).
12.
X. L.
Hong
,
D. J. J.
Loy
,
P. A.
Dananjaya
,
F.
Tan
,
C. M.
Ng
, and
W. S.
Lew
, “
Oxide-based RRAM materials for neuromorphic computing
,”
J. Mater. Sci.
53
,
8720
8746
(
2018
).
13.
R.
Yang
,
H. M.
Huang
, and
X.
Guo
, “
Memristive synapses and neurons for bioinspired computing
,”
Adv. Electron. Mater.
5
(
9
),
1900287
(
2019
).
14.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Networks
115
,
100
123
(
2019
).
15.
C.
Du
,
F.
Cai
,
M. A.
Zidan
,
W.
Ma
,
S. H.
Lee
, and
W. D.
Lu
, “
Reservoir computing using dynamic memristors for temporal information processing
,”
Nat. Commun.
8
(
1
),
2204
(
2017
).
16.
J. Y.
Mao
,
Z.
Zheng
,
Z. Y.
Xiong
,
P.
Huang
,
G. L.
Ding
,
R.
Wang
,
Z. P.
Wang
,
J. Q.
Yang
,
Y.
Zhou
,
T.
Zhai
, and
S. T.
Han
, “
Lead-free monocrystalline perovskite resistive switching device for temporal information processing
,”
Nano Energy
71
,
104616
(
2020
).
17.
S.
Cho
,
S. T.
Lee
,
S.
Kim
, and
H.
Shin
, “
A more practical indicator of MAC operational power efficiency inside memory-based synapse array
,”
J. Semicond. Technol. Sci.
24
(
1
),
47
(
2024
).
18.
L.
Appeltant
,
G.
Van Der Sande
,
J.
Danckaert
, and
I.
Fischer
, “
Constructing optimized binary masks for reservoir computing with delay systems
,”
Sci. Rep.
4
(
1
),
3629
(
2014
).
19.
Y.
Paquot
,
F.
Duport
,
A.
Smerieri
,
J.
Dambre
,
B.
Schrauwen
,
M.
Haelterman
, and
S.
Massar
, “
Optoelectronic reservoir computing
,”
Sci. Rep.
2
(
1
),
287
(
2012
).
20.
R.
Wang
,
Q.
Liang
,
S.
Wang
,
Y.
Cao
,
X.
Ma
,
H.
Wang
, and
Y.
Hao
, “
Deep reservoir computing based on self-rectifying memristor synapse for time series prediction
,”
Appl. Phys. Lett.
123
,
042109
(
2023
).
21.
R.
Midya
,
Z.
Wang
,
S.
Asapu
,
X.
Zhang
,
M.
Rao
,
W.
Song
,
Y.
Zhuo
,
N.
Upadhyay
,
Q.
Xia
, and
J. J.
Yang
, “
Reservoir computing using diffusive memristors
,”
Adv. Intell. Syst.
1
(
7
),
1900084
(
2019
).
22.
D.
Ju
,
S.
Kim
,
K.
Park
,
J.
Lee
,
M.
Koo
, and
S.
Kim
, “
Realization of multiple synapse plasticity by coexistence of volatile and nonvolatile characteristics of interface type memristor
,”
ACS Appl. Mater. Interfaces
16
,
24929
24942
(
2024
).
23.
D.
Ju
and
S.
Kim
, “
Temporal multibit operation of dynamic memristor for reservoir computing
,”
Results Phys.
61
,
107796
(
2024
).
24.
N.
Prudnikov
,
S.
Malakhov
,
V.
Kulagin
,
A.
Emelyanov
,
S.
Chvalun
,
V.
Demin
, and
V.
Erokhin
, “
Multi-terminal nonwoven stochastic memristive devices based on polyamide-6 and polyaniline for neuromorphic computing
,”
Biomimetics
8
,
189
(
2023
).
25.
A. N.
Matsukatova
,
N. V.
Prudnikov
,
V. A.
Kulagin
,
S.
Battistoni
,
A. A.
Minnekhanov
,
A. D.
Trofimov
,
A. A.
Nesmelov
,
S. A.
Zavyalov
,
Y. N.
Malakhova
,
M.
Parmeggiani
,
A.
Ballesio
,
S. L.
Marasso
,
S. N.
Chvalun
,
V. A.
Demin
,
A. V.
Emelyanov
, and
V.
Erokhin
, “
Combination of organic-based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification
,”
Adv. Intell. Syst.
5
,
2200407
(
2023
).
26.
G.
Milano
,
G.
Pedretti
,
K.
Montano
,
S.
Ricci
,
S.
Hashemkhani
,
L.
Boarino
,
D.
Ielmini
, and
C.
Ricciardi
, “
In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks
,”
Nat. Mater.
21
,
195
202
(
2022
).
27.
S.
Kim
,
S.
Jung
,
M. H.
Kim
,
Y. C.
Chen
,
Y. F.
Chang
,
K. C.
Ryoo
,
S.
Cho
,
J. H.
Lee
, and
B. G.
Park
, “
Scaling effect on silicon nitride memristor with highly doped Si substrate
,”
Small
14
(
19
),
1704062
(
2018
).
28.
J.
Park
,
W.
Lee
,
M.
Choe
,
S.
Jung
,
M.
Son
,
S.
Kim
,
S.
Park
,
J.
Shin
,
D.
Lee
,
M.
Siddik
,
J.
Woo
,
G.
Choi
,
E.
Cha
,
T.
Lee
, and
H.
Hwang
, “
Quantized conductive filament formed by limited Cu source in sub-5nm era
,” in
IEDM Technical Digest
(
IEEE
,
2011
), Vol.
63
.
29.
J.
Lee
,
J.
Park
,
S.
Jung
, and
H.
Hwang
, “
Scaling effect of device area and film thickness on electrical and reliability characteristics of RRAM
,” in
IEEE International Interconnect Technology Conference
(
IEEE
,
2011
), pp.
1
3
.
30.
D. K.
Lee
,
M. H.
Kim
,
S.
Bang
,
T. H.
Kim
,
Y. J.
Choi
,
K.
Hong
,
S.
Kim
,
S.
Cho
,
J. H.
Lee
, and
B. G.
Park
, “
Improvement of resistive switching characteristics of titanium oxide based nanowedge RRAM through nickel silicidation
,”
IEEE Trans. Electron Devices
68
(
1
),
438
442
(
2021
).
31.
D.
Ju
,
J. H.
Kim
, and
S.
Kim
, “
Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system
,”
J. Alloys Compd.
961
,
170920
(
2023
).
32.
M. K.
Kim
and
J. S.
Lee
, “
Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics
,”
ACS Nano
12
(
2
),
1680
1687
(
2018
).
33.
D. C.
Hu
,
R.
Yang
,
L.
Jiang
, and
X.
Guo
, “
Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction
,”
ACS Appl. Mater. Interfaces
10
(
7
),
6463
6470
(
2018
).
34.
D.
Ju
and
S.
Kim
, “
Implementation of edge computing using HfAlOx-based memristor
,”
J. Alloys Compd.
997
,
174804
(
2024
).
35.
D. K.
Lee
,
M. H.
Kim
,
S.
Bang
,
T. H.
Kim
,
Y. J.
Choi
,
S.
Kim
,
S.
Cho
, and
B. G.
Park
, “
HfOx-based nano-wedge structured resistive switching memory device operating at sub-μA current for neuromorphic computing application
,”
Semicond. Sci. Technol.
35
(
5
),
055002
(
2020
).
36.
G.
Niu
,
P.
Calka
,
P.
Huang
,
S. U.
Sharath
,
S.
Petzold
,
A.
Gloskovskii
,
K.
Fröhlich
,
Y.
Zhao
,
J.
Kang
,
M. A.
Schubert
,
F.
Bärwolf
,
W.
Ren
,
Z. G.
Ye
,
E.
Perez
,
C.
Wenger
,
L.
Alff
, and
T.
Schroeder
, “
Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy
,”
Mater. Res. Lett.
7
(
3
),
117
123
(
2019
).
37.
H.
Na
,
J.
Lee
,
J.
Jeong
,
T.
Kim
, and
H.
Sohn
, “
Effect of interfacial SiO2–y layer and defect in HfO2–x film on flat-band voltage of HfO2–x/SiO2–y stacks for backside-illuminated CMOS image sensors
,”
Appl. Phys. A
124
,
259
(
2018
).
38.
K.
Lee
,
K.
Park
,
H. J.
Lee
,
M. S.
Song
,
K. C.
Lee
,
J.
Namkung
,
J. H.
Lee
,
J.
Park
, and
S. C.
Chae
, “
Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency
,”
Sci. Rep.
11
(
1
),
6290
(
2021
).
39.
L.
Völkel
,
D.
Braun
,
M.
Belete
,
S.
Kataria
,
T.
Wahlbrink
,
K.
Ran
,
K.
Kistermann
,
J.
Mayer
,
S.
Menzel
,
A.
Daus
, and
M. C.
Lemme
, “
Resistive switching and current conduction mechanisms in hexagonal boron nitride threshold memristors with nickel electrodes
,”
Adv. Funct. Mater.
34
(
15
),
2300428
(
2024
).
40.
J.
Lee
,
M.
Jo
,
D. J.
Seong
,
J.
Shin
, and
H.
Hwang
, “
Materials and process aspect of cross-point RRAM (invited)
,”
Microelectron. Eng.
88
(
7
),
1113
1118
(
2011
).
41.
S. Z.
Rahaman
,
S.
Maikap
,
T. C.
Tien
,
H. Y.
Lee
,
W. S.
Chen
,
F. T.
Chen
,
M. J.
Kao
, and
M. J.
Tsai
, “
Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface
,”
Nanoscale Res. Lett.
7
,
345
(
2012
).
42.
T.
Nagata
,
M.
Haemori
,
Y.
Yamashita
,
H.
Yoshikawa
,
Y.
Iwashita
,
K.
Kobayashi
, and
T.
Chikyow
, “
Bias application hard x-ray photoelectron spectroscopy study of forming process of Cu/HfO2/Pt resistive random access memory structure
,”
Appl. Phys. Lett.
99
(
22
),
223517
(
2011
).
43.
M.
Haemori
,
T.
Nagata
, and
T.
Chikyow
, “
Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion
,”
Appl. Phys. Express
2
(
6
),
061401
(
2009
).
44.
J.
Deuermeier
,
A.
Kiazadeh
,
A.
Klein
,
R.
Martins
, and
E.
Fortunato
,
Nanomaterials
9
,
289
(
2019
).
45.
J.
Yang
,
H.
Ryu
, and
S.
Kim
, “
Resistive and synaptic properties modulation by electroforming polarity in CMOS-compatible Cu/HfO2/Si device
,”
Chaos, Solitons Fractals
145
,
110783
(
2021
).
46.
F. M.
Simanjuntak
,
S.
Chandrasekaran
,
B.
Pattanayak
,
C. C.
Lin
, and
T. Y.
Tseng
, “
Peroxide induced volatile and non-volatile switching behavior in ZnO-based electrochemical metallization memory cell
,”
Nanotechnology
28
(
38
),
38LT02
(
2017
).
47.
C.
Mahata
,
W.
Kim
,
S.
Kim
,
M.
Ismail
,
M. H.
Kim
,
S.
Kim
, and
B. G.
Park
, “
Reversible nonvolatile and threshold switching characteristics in Cu/high-k/Si devices
,”
IEICE Electron. Express
16
(
16
),
20190404
(
2019
).
48.
X.
Zhang
,
S.
Liu
,
X.
Zhao
,
F.
Wu
,
Q.
Wu
,
W.
Wang
,
R.
Cao
,
Y.
Fang
,
H.
Lv
,
S.
Long
,
Q.
Liu
, and
M.
Liu
, “
Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor
,”
IEEE Electron Device Lett.
38
(
9
),
1208
1211
(
2017
).
49.
K. Y.
Shin
,
Y.
Kim
,
F. V.
Antolinez
,
J. S.
Ha
,
S. S.
Lee
, and
J. H.
Park
, “
Controllable formation of nanofilaments in resistive memories via tip-enhanced electric fields
,”
Adv. Electron. Mater.
2
(
10
),
1600233
(
2016
).
50.
Y.
Kim
,
H.
Choi
,
H. S.
Park
,
M. S.
Kang
,
K. Y.
Shin
,
S. S.
Lee
, and
J. H.
Park
, “
Reliable multistate data storage with low power consumption by selective oxidation of pyramid-structured resistive memory
,”
ACS Appl. Mater. Interfaces
9
(
44
),
38643
38650
(
2017
).
51.
J.
Li
,
C.
Yao
,
W.
Huang
,
N.
Qin
, and
D.
Bao
, “
Highly uniform resistive switching properties of NiFe2O4 films by embedding well-ordered pyramid-shaped Pt/Au nanostructures
,”
J. Alloys Compd.
890
,
161814
(
2022
).
52.
P. H.
Chen
,
C. Y.
Lin
,
T. C.
Chang
,
J. K.
Eshraghian
,
Y. T.
Chao
,
W. D.
Lu
, and
S. M.
Sze
, “
Investigating selectorless property within niobium devices for storage applications
,”
ACS Appl. Mater. Interfaces
14
(
1
),
2343
2350
(
2022
).
53.
S.
Yang
,
T.
Kim
,
S.
Kim
,
D.
Chung
,
T.-H.
Kim
,
J.-K.
Lee
,
S.
Kim
,
M.
Ismail
,
C.
Mahata
,
S.
Kim
, and
S.
Cho
, “
Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems
,”
Nanoscale
15
(
32
),
13239
13251
(
2023
).
54.
A.
Sokolov
,
M.
Ali
,
H.
Li
,
Y. R.
Jeon
,
M. J.
Ko
, and
C.
Choi
, “
Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics
,”
Adv. Electron. Mater.
7
(
2
),
2000866
(
2021
).
55.
W. J.
Chen
,
C. H.
Cheng
,
P. E.
Lin
,
Y. T.
Tseng
,
T. C.
Chang
, and
J. S.
Chen
, “
Analog resistive switching and synaptic functions in WOx/TaOx bilayer through redox-induced trap-controlled conduction
,”
ACS Appl. Electron. Mater.
1
(
11
),
2422
2430
(
2019
).
56.
L.
Qin
,
S.
Cheng
,
B.
Xie
,
X.
Wei
, and
W.
Jie
, “
Co-existence of bipolar nonvolatile and volatile resistive switching based on WO3 nanowire for applications in neuromorphic computing and selective memory
,”
Appl. Phys. Lett.
121
(
9
),
093502
(
2022
).
57.
M. S.
Kulkarni
and
C.
Teuscher
, in
IEEE/ACM International Symposium on Nanoscale Architectures NANOARCH
(
IEEE
,
Piscataway, NJ
,
2012
), pp.
226
232
.
58.
H.
Ryu
and
S.
Kim
, “
Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification
,”
Chaos, Solitons Fractals
150
,
111223
(
2021
).
59.
G.
Zhang
,
J.
Qin
,
Y.
Zhang
,
G.
Gong
,
Z. Y.
Xiong
,
X.
Ma
,
Z.
Lv
,
Y.
Zhou
, and
S. T.
Han
, “
Functional materials for memristor-based reservoir computing: Dynamics and applications
,”
Adv. Funct. Mater.
33
,
2302929
(
2023
).
You do not currently have access to this content.