Using molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water, which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation and distance relative to the surface of ice, which enables the effective binding (via hydrogen bonds) of the molecule with the nascent ice surface. Our results show that the final adsorption of the AFP III molecule on the surface of ice is not achieved by chaotic diffusion movements, but it is preceded by a remote, water-mediated interaction between the IBS and the surface of ice. The key factor that determines the existence of this interaction is the ability of water molecules to spontaneously form large, high-volume aggregates that can be anchored to both the IBS of the AFP molecule and the surface of ice. The results presented in this work for AFP III are in full agreement with the ones obtained by us previously for hyperactive CfAFP, which indicates that the mechanism of the remote interaction of these molecules with ice remains unchanged despite significant differences in the molecular structure of their ice binding sites. For that reason, we can expect that also other types of AFPs interact with the ice surface according to an analogous mechanism.

1.
Y.
Celik
,
L. A.
Graham
,
Y.-F.
Mok
,
M.
Bar
,
P. L.
Davies
, and
I.
Braslavsky
, “
Superheating of ice crystals in antifreeze protein solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
5423
5428
(
2010
).
2.
Y.
Celik
,
R.
Drori
,
N.
Pertaya-Braun
,
A.
Altan
,
T.
Barton
,
M.
Bar-Dolev
,
A.
Groisman
,
P. L.
Davies
, and
I.
Braslavsky
, “
Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1309
1314
(
2013
).
3.
R.
Drori
,
P. L.
Davies
, and
I.
Braslavsky
, “
When are antifreeze proteins in solution essential for ice growth inhibition?
,”
Langmuir
31
,
5805
5811
(
2015
).
4.
A. L.
Devries
and
Y.
Lin
, “
Structure of a peptide antifreeze and mechanism of adsorption to ice
,”
Biochim. Biophys. Acta, Protein Struct.
495
,
388
392
(
1977
).
5.
N.
Smolin
and
V.
Daggett
, “
Formation of ice-like water structure on the surface of an antifreeze protein
,”
J. Phys. Chem. B
112
,
6193
6202
(
2008
).
6.
D. R.
Nutt
and
J. C.
Smith
, “
Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations
,”
J. Am. Chem. Soc.
130
,
13066
13073
(
2008
).
7.
Y.
Xu
,
R.
Gnanasekaran
, and
D. M.
Leitner
, “
Analysis of water and hydrogen bond dynamics at the surface of an antifreeze protein
,”
J. At., Mol., Opt. Phys.
2012
,
1
6
.
8.
K.
Meister
,
S.
Ebbinghaus
,
Y.
Xu
,
J. G.
Duman
,
A.
DeVries
,
M.
Gruebele
,
D. M.
Leitner
, and
M.
Havenith
, “
Long-range protein-water dynamics in hyperactive insect antifreeze proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1617
1622
(
2013
).
9.
K.
Meister
,
S.
Strazdaite
,
A. L.
DeVries
,
S.
Lotze
,
L. L. C.
Olijve
,
I. K.
Voets
, and
H. J.
Bakker
, “
Observation of ice-like water layers at an aqueous protein surface
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
17732
17736
(
2014
).
10.
C. P.
Garnham
,
R. L.
Campbell
, and
P. L.
Davies
, “
Anchored clathrate waters bind antifreeze proteins to ice
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
7363
7367
(
2011
).
11.
K. A.
Sharp
, “
A peek at ice binding by antifreeze proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
7281
7282
(
2011
).
12.
A. J.
Middleton
,
C. B.
Marshall
,
F.
Faucher
,
M.
Bar-Dolev
,
I.
Braslavsky
,
R. L.
Campbell
,
V. K.
Walker
, and
P. L.
Davies
, “
Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site
,”
J. Mol. Biol.
416
,
713
724
(
2012
).
13.
N. M.-M. U.
Khan
,
T.
Arai
,
S.
Tsuda
, and
H.
Kondo
, “
Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity
,”
Sci. Rep.
11
,
5971
(
2021
).
14.
A.
Hudait
,
D. R.
Moberg
,
Y.
Qiu
,
N.
Odendahl
,
F.
Paesani
, and
V.
Molinero
, “
Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8266
8271
(
2018
).
15.
J.
Zielkiewicz
, “
Mechanism of antifreeze protein functioning and the “anchored clathrate water” concept
,”
J. Chem. Phys.
159
,
085101
(
2023
).
16.
J.
Grabowska
,
A.
Kuffel
, and
J.
Zielkiewicz
, “
Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface
,”
Phys. Chem. Chem. Phys.
20
,
25365
25376
(
2018
).
17.
J.
Grabowska
,
A.
Kuffel
, and
J.
Zielkiewicz
, “
Role of the solvation water in remote interactions of hyperactive antifreeze proteins with the surface of ice
,”
J. Phys. Chem. B
123
,
8010
8018
(
2019
).
18.
J.
Grabowska
,
A.
Kuffel
, and
J.
Zielkiewicz
, “
Interfacial water controls the process of adsorption of hyperactive antifreeze proteins onto the ice surface
,”
J. Mol. Liq.
306
,
112909
(
2020
).
19.
O. A.
Karim
and
A. D. J.
Haymet
, “
The ice/water interface: A molecular dynamics simulation study
,”
J. Chem. Phys.
89
,
6889
6896
(
1988
).
20.
D.
Beaglehole
and
P.
Wilson
, “
Thickness and anisotropy of the ice-water interface
,”
J. Phys. Chem.
97
,
11053
11055
(
1993
).
21.
M. M.
Conde
,
C.
Vega
, and
A.
Patrykiejew
, “
The thickness of a liquid layer on the free surface of ice as obtained from computer simulation
,”
J. Chem. Phys.
129
,
014702
(
2008
).
22.
S.
Cui
,
W.
Zhang
,
X.
Shao
, and
W.
Cai
, “
Do antifreeze proteins generally possess the potential to promote ice growth?
,”
Phys. Chem. Chem. Phys.
24
,
7901
7908
(
2022
).
23.
A.
Kuffel
,
D.
Czapiewski
, and
J.
Zielkiewicz
, “
Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein
,”
J. Chem. Phys.
141
,
055103
(
2014
).
24.
S.
Del Galdo
,
P.
Marracino
,
M.
D’Abramo
, and
A.
Amadei
, “
In silico characterization of protein partial molecular volumes and hydration shells
,”
Phys. Chem. Chem. Phys.
17
,
31270
31277
(
2015
).
25.
H.
Tanaka
, “
Simple physical model of liquid water
,”
J. Chem. Phys.
112
,
799
809
(
2000
).
26.
G.
Némethy
and
H. A.
Scheraga
, “
Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water
,”
J. Chem. Phys.
36
,
3382
3400
(
1962
).
27.
H.
Tanaka
, “
Simple physical explanation of the unusual thermodynamic behavior of liquid water
,”
Phys. Rev. Lett.
80
,
5750
5753
(
1998
).
28.
F. H.
Stillinger
, “
Water revisited
,”
Science
209
,
451
457
(
1980
).
29.
H.
Tanaka
, “
General view of a liquid-liquid phase transition
,”
Phys. Rev. E
62
,
6968
6976
(
2000
).
30.
H.
Tanaka
, “
Thermodynamic anomaly and polyamorphism of water
,”
Europhys. Lett.
50
,
340
346
(
2000
).
31.
H.
Tanaka
, “
Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit
,”
J. Chem. Phys.
111
,
3163
3174
(
1999
).
32.
J.
Russo
and
H.
Tanaka
, “
Understanding water’s anomalies with locally favoured structures
,”
Nat. Commun.
5
,
3556
(
2014
).
33.
A.
Kuffel
and
J.
Zielkiewicz
, “
Why the solvation water around proteins is more dense than bulk water
,”
J. Phys. Chem. B
116
,
12113
12124
(
2012
).
34.
P. W.
Wilson
,
K. E.
Osterday
,
A. F.
Heneghan
, and
A. D. J.
Haymet
, “
Type I antifreeze proteins enhance ice nucleation above certain concentrations
,”
J. Biol. Chem.
285
,
34741
34745
(
2010
).
35.
S.
Kumari
,
A. V.
Muthachikavil
,
J. K.
Tiwari
, and
S. N.
Punnathanam
, “
Computational study of differences between antifreeze activity of type-III antifreeze protein from ocean pout and its mutant
,”
Langmuir
36
,
2439
2448
(
2020
).
36.
P.
Pal
,
R.
Aich
,
S.
Chakraborty
, and
B.
Jana
, “
Molecular factors of ice growth inhibition for hyperactive and globular antifreeze proteins: Insights from molecular dynamics simulation
,”
Langmuir
38
,
15132
15144
(
2022
).
37.
R. P.
Tas
,
M. M. R. M.
Hendrix
, and
I. K.
Voets
, “
Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2212456120
(
2023
).
38.
D. A.
Case
,
R. .
Betz
,
D. S.
Cerutti
,
T. E.
Cheatham
,
T. A.
Darden
,
R. E.
Duke
,
T.
Giese
,
H.
Gohlke
,
A. W.
Goetz
,
N.
Homeyer
,
S.
Izadi
,
P.
Janowski
,
J.
Kaus
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
T.
Luchko
,
R.
Luo
,
B.
Madej
,
D.
Mermelstein
,
K. M.
Merz
,
G.
Monard
,
H.
Nguyen
,
H. T.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
C. L.
Simmerling
,
W. M.
Botello-Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
, and
P. A.
Kollman
,
Amber 16
,
University of California
,
San Francisco
,
2016
.
39.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
40.
J. L. F. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
,
C.
Vega
,
R. G.
Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
41.
R. G.
Fernández
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct
,”
J. Chem. Phys.
124
,
144506
(
2006
).
42.
Z.
Jia
,
C. I.
DeLuca
,
H.
Chao
, and
P. L.
Davies
, “
Structural basis for the binding of a globular antifreeze protein to ice
,”
Nature
384
,
285
288
(
1996
).
43.
C. L.
Hew
,
N. C.
Wang
,
S.
Joshi
,
G. L.
Fletcher
,
G. K.
Scott
,
P. H.
Hayes
,
B.
Buettner
, and
P. L.
Davies
, “
Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus
,”
J. Biol. Chem.
263
,
12049
12055
(
1988
).
44.
S. P.
Graether
,
C. I.
DeLuca
,
J.
Baardsnes
,
G. A.
Hill
,
P. L.
Davies
, and
Z.
Jia
, “
Quantitative and qualitative analysis of type III antifreeze protein structure and function
,”
J. Biol. Chem.
274
,
11842
11847
(
1999
).
45.
M. D.
Ekpo
,
J.
Xie
,
Y.
Hu
,
X.
Liu
,
F.
Liu
,
J.
Xiang
,
R.
Zhao
,
B.
Wang
, and
S.
Tan
, “
Antifreeze proteins: Novel applications and navigation towards their clinical application in cryobanking
,”
Int. J. Mol. Sci.
23
,
2639
(
2022
).
46.
M. D.
SmallwoodWorrall
,
L.
Byass
,
L.
Elias
,
D.
Ashford
,
C. J.
Doucet
,
C.
Holt
,
J.
Telford
,
P.
Lillford
, and
D. J.
Bowles
, “
Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota)
,”
Biochem. J.
340
,
385
391
(
1999
).
47.
L. A.
Graham
,
Y. C.
Liou
,
V. K.
Walker
, and
P. L.
Davies
, “
Hyperactive antifreeze protein from beetles
,”
Nature
388
,
727
728
(
1997
).
48.
M. J.
Kuiper
,
C. J.
Morton
,
S. E.
Abraham
, and
A.
Gray-Weale
, “
The biological function of an insect antifreeze protein simulated by molecular dynamics
,”
Elife
4
,
e05142
(
2015
).
49.
J.
Baardsnes
and
P. L.
Davies
, “
Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein
,”
Biochim. Biophys. Acta, Protein Struct.
1601
,
49
54
(
2002
).
50.
C. P.
Garnham
,
A.
Natarajan
,
A. J.
Middleton
,
M. J.
Kuiper
,
I.
Braslavsky
, and
P. L.
Davies
, “
Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging
,”
Biochemistry
49
,
9063
9071
(
2010
).
51.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
52.
W.
Hwang
,
M. J.
Lang
, and
M.
Karplus
, “
Force generation in kinesin hinges on cover-neck bundle formation
,”
Structure
16
,
62
71
(
2008
).
53.
J.
Zielkiewicz
, “
Two-particle entropy and structural ordering in liquid water
,”
J. Phys. Chem. B
112
,
7810
7815
(
2008
).
54.
H. S.
Green
,
The Molecular Theory of Fluids
(
North-Holland
,
Amsterdam
,
1952
), Chap. III.
55.
R.
Esposito
,
F.
Saija
,
A.
Marco Saitta
, and
P. V.
Giaquinta
, “
Entropy-based measure of structural order in water
,”
Phys. Rev. E
73
,
040502
(
2006
).
56.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. A.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
The structure of the first coordination shell in liquid water
,”
Science
304
,
995
999
(
2004
).
57.
J.
Grabowska
,
A.
Kuffel
, and
J.
Zielkiewicz
, “
Revealing the Frank–Evans “iceberg” structures within the solvation layer around hydrophobic solutes
,”
J. Phys. Chem. B
125
,
1611
1617
(
2021
).
58.
A.
Hudait
,
N.
Odendahl
,
Y.
Qiu
,
F.
Paesani
, and
V.
Molinero
, “
Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs
,”
J. Am. Chem. Soc.
140
,
4905
4912
(
2018
).
59.
S.
Mahatabuddin
,
D.
Fukami
,
T.
Arai
,
Y.
Nishimiya
,
R.
Shimizu
,
C.
Shibazaki
,
H.
Kondo
,
M.
Adachi
, and
S.
Tsuda
, “
Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
5456
5461
(
2018
).
60.
K.
Liu
,
Z.
Jia
,
G.
Chen
,
C.
Tung
, and
R.
Liu
, “
Systematic size study of an insect antifreeze protein and its interaction with ice
,”
Biophys. J.
88
,
953
958
(
2005
).
61.
D. J.
Kozuch
,
F. H.
Stillinger
, and
P. G.
Debenedetti
, “
Combined molecular dynamics and neural network method for predicting protein antifreeze activity
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
13252
13257
(
2018
).
62.
C. B.
Marshall
,
M. E.
Daley
,
B. D.
Sykes
, and
P. L.
Davies
, “
Enhancing the activity of a β-helical antifreeze protein by the engineered addition of coils
,”
Biochemistry
43
,
11637
11646
(
2004
).
63.
C. L.
Scholl
and
P. L.
Davies
, “
Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site
,”
FEBS Lett.
597
,
538
546
(
2023
).
64.
K.
Mochizuki
and
M.
Matsumoto
, “
Collective transformation of water between hyperactive antifreeze proteins: RiAFPs
,”
Crystals
9
,
188
(
2019
).

Supplementary Material

You do not currently have access to this content.