Liquid crystals consisting of biaxial particles can exhibit a much richer phase behavior than their uniaxial counterparts. Usually, one has to rely on simulation results to understand the phase diagram of these systems since very few analytical results exist. In this work, we apply fundamental measure theory, which allows us to derive free energy functionals for hard particles from first principles and with high accuracy, to systems of hard cylinders, cones, and spherotriangles. We provide a general recipe for incorporating biaxial liquid crystal order parameters into fundamental measure theory and use this framework to obtain the phase boundaries for the emergence of orientational order in the considered systems. Our results provide insights into the phase behavior of biaxial nematic liquid crystals and, in particular, into methods for their analytical investigation.
Skip Nav Destination
,
,
,
Article navigation
7 March 2024
Research Article|
March 05 2024
Biaxial nematic order in fundamental measure theory Available to Purchase
Anouar El Moumane
;
Anouar El Moumane
(Data curation, Formal analysis, Investigation, Software, Validation, Visualization, Writing – original draft)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, 40225 Düsseldorf, Germany
Search for other works by this author on:
Michael te Vrugt
;
Michael te Vrugt
(Funding acquisition, Methodology, Supervision, Validation, Writing – original draft, Writing – review & editing)
2
DAMTP, Centre for Mathematical Sciences, University of Cambridge
, Cambridge CB3 0WA, United Kingdom
Search for other works by this author on:
Hartmut Löwen
;
Hartmut Löwen
(Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, 40225 Düsseldorf, Germany
Search for other works by this author on:
René Wittmann
René Wittmann
a)
(Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, 40225 Düsseldorf, Germany
3
Institut für Sicherheit und Qualität bei Fleisch, Max Rubner-Institut
, 95326 Kulmbach, Germany
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
Anouar El Moumane
1
Michael te Vrugt
2
Hartmut Löwen
1
René Wittmann
1,3,a)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, 40225 Düsseldorf, Germany
2
DAMTP, Centre for Mathematical Sciences, University of Cambridge
, Cambridge CB3 0WA, United Kingdom
3
Institut für Sicherheit und Qualität bei Fleisch, Max Rubner-Institut
, 95326 Kulmbach, Germany
a)Author to whom correspondence should be addressed: [email protected]
J. Chem. Phys. 160, 094903 (2024)
Article history
Received:
November 19 2023
Accepted:
February 12 2024
Citation
Anouar El Moumane, Michael te Vrugt, Hartmut Löwen, René Wittmann; Biaxial nematic order in fundamental measure theory. J. Chem. Phys. 7 March 2024; 160 (9): 094903. https://doi.org/10.1063/5.0188117
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
Related Content
Lattice model for biaxial and uniaxial nematic liquid crystals
J. Chem. Phys. (May 2016)
Molecular field theory for biaxial smectic A liquid crystals
J. Chem. Phys. (October 2013)
Novel biaxial nematic phases of side-chain liquid crystalline polymers
J. Chem. Phys. (December 2012)
Thermotropic biaxial nematic liquid crystals: Spontaneous or field stabilized?
J. Chem. Phys. (April 2008)
Density functional theory and simulations of colloidal triangular prisms
J. Chem. Phys. (March 2017)