Photosensitization of semiconductors by excitation of chiral plasmonic metallic nanostructures has attracted much attention, not only for the analysis and detection of circularly polarized light but also for its potential applications in chiral photosynthesis. Although there have been reports on the detection of semiconductor-sensitized current in chiral nanostructures precisely fabricated by physical vapor deposition and/or lithography techniques, there have been no studies using plasmonic metal nanocolloids synthesized by chemical processes. In this study, we report the establishment of a fabrication method for large-area chiral photoelectrodes and the semiconductor photosensitization phenomenon realized using chiral plasmonic nanoparticles. Chiral plasmonic Au nanoparticles prepared by previously reported colloidal methods were immobilized onto a TiO2 thin film electrode by electrophoresis. When TiO2 electrodes loaded with chiral Au nanoparticles synthesized using L-cysteine were irradiated with circularly polarized light, left circularly polarized light irradiation at a wavelength of 500–600 nm generated a larger anodic photocurrent than right circularly polarized light irradiation at the same wavelength. This trend was reversed for TiO2 electrodes immobilized with colloidal Au nanoparticles synthesized with D-cysteine. From these results, we conclude that the efficiency of photocurrent generation by chiral plasmon excitation can be controlled by the polarization direction of the incident light.

1.
Y.
Tian
and
T.
Tatsuma
,
J. Am. Chem. Soc.
127
(
20
),
7632
7637
(
2005
).
2.
S.
Sarina
,
E. R.
Waclawik
, and
H. Y.
Zhu
,
Green Chem.
15
(
7
),
1814
1833
(
2013
).
3.
T.
Tatsuma
,
H.
Nishi
, and
T.
Ishida
,
Chem. Sci.
8
(
5
),
3325
3337
(
2017
).
4.
N. Q.
Wu
,
Nanoscale
10
(
6
),
2679
2696
(
2018
).
5.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
,
Nat. Nanotechnol.
10
(
1
),
25
34
(
2015
).
6.
M.
Kuwahara
,
L.
Mizuno
,
R.
Yokoi
,
H.
Morishita
,
T.
Ishida
,
K.
Saitoh
,
N.
Tanaka
,
S.
Kuwahara
, and
T.
Agemura
,
Appl. Phys. Lett.
121
(
14
),
143503
(
2022
).
7.
W. B.
Hou
,
W. H.
Hung
,
P.
Pavaskar
,
A.
Goeppert
,
M.
Aykol
, and
S. B.
Cronin
,
ACS Catal.
1
(
8
),
929
936
(
2011
).
8.
M.
Sayed
,
J. G.
Yu
,
G.
Liu
, and
M.
Jaroniec
,
Chem. Rev.
122
(
11
),
10484
10537
(
2022
).
9.
A.
Kumar
,
P.
Choudhary
,
A.
Kumar
,
P. H. C.
Camargo
, and
V.
Krishnan
,
Small
18
(
1
),
2101638
(
2022
).
10.
R. G.
Ciocarlan
,
N.
Blommaerts
,
S.
Lenaerts
,
P.
Cool
, and
S. W.
Verbruggen
,
ChemSusChem
16
(
5
),
e202201647
(
2023
).
11.
Y. Q.
Zhong
,
K.
Ueno
,
Y.
Mori
,
T.
Oshikiri
, and
H.
Misawa
,
J. Phys. Chem. C
119
(
16
),
8889
8897
(
2015
).
12.
M.
Ijaz
,
Int. J. Hydrogen Energy
48
(
26
),
9609
9619
(
2023
).
13.
Y.
Nishijima
,
K.
Ueno
,
Y.
Yokota
,
K.
Murakoshi
, and
H.
Misawa
,
J. Phys. Chem. Lett.
1
(
13
),
2031
2036
(
2010
).
14.
E.
Kazuma
,
N.
Sakai
, and
T.
Tatsuma
,
Chem. Commun.
47
(
20
),
5777
5779
(
2011
).
15.
K.
Saito
,
I.
Tanabe
, and
T.
Tatsuma
,
J. Phys. Chem. Lett.
7
(
21
),
4363
4368
(
2016
).
16.
H. E.
Lee
,
H. Y.
Ahn
,
J.
Mun
,
Y. Y.
Lee
,
M.
Kim
,
N. H.
Cho
,
K.
Chang
,
W. S.
Kim
,
J.
Rho
, and
K. T.
Nam
,
Nature
556
(
7701
),
360
365
(
2018
).
17.
H. E.
Lee
,
R. M.
Kim
,
H. Y.
Ahn
,
Y. Y.
Lee
,
G. H.
Byun
,
S. W.
Im
,
J.
Mun
,
J.
Rho
, and
K. T.
Nam
,
Nat. Commun.
11
(
1
),
263
(
2020
).
18.
W. B.
Wu
and
M.
Pauly
,
Mater. Adv.
3
(
1
),
186
215
(
2022
).
19.
S. U.
Abbas
,
J. J.
Li
,
X.
Liu
,
A.
Siddique
,
Y. X.
Shi
,
M.
Hou
,
K.
Yang
,
F.
Nosheen
,
X. Y.
Cui
,
G. C.
Zheng
, and
Z. C.
Zhang
,
Rare Metals
42
(
8
),
2489
2515
(
2023
).
20.
W.
Li
,
Z. J.
Coppens
,
L. V.
Besteiro
,
W. Y.
Wang
,
A. O.
Govorov
, and
J.
Valentine
,
Nat. Commun.
6
,
8379
(
2015
).
21.
Y. R.
Fang
,
R.
Verre
,
L.
Shao
,
P.
Nordlander
, and
M.
Kall
,
Nano Lett.
16
(
8
),
5183
5190
(
2016
).
22.
Q.
Jiang
,
B. W.
Du
,
M. L.
Jiang
,
D. L.
Liu
,
Z. X.
Liu
,
B. W.
Li
,
Z.
Liu
,
F.
Lin
,
X.
Zhu
, and
Z. Y.
Fang
,
Nanoscale
12
(
10
),
5906
5913
(
2020
).
23.
I.
Gu
,
T.
Ishida
, and
T.
Tatsuma
,
Electrochemistry
90
(
7
),
077006
(
2022
).
24.
B.
Peng
,
G.
Jungmann
,
C.
Jager
,
D.
Haarer
,
H. W.
Schmidt
, and
M.
Thelakkat
,
Coord. Chem. Rev.
248
(
13–14
),
1479
1489
(
2004
).
25.
T.
Kameyama
,
Y.
Douke
,
H.
Shibakawa
,
M.
Kawaraya
,
H.
Segawa
,
S.
Kuwabata
, and
T.
Torimoto
,
J. Phys. Chem. C
118
(
51
),
29517
29524
(
2014
).
26.
J. W.
Xue
,
O.
Elbanna
,
S.
Kim
,
M.
Fujitsuka
, and
T.
Majima
,
Chem. Commun.
54
(
47
),
6052
6055
(
2018
).

Supplementary Material

You do not currently have access to this content.