All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects. It is found that CFPMAI with a –CF3 substituent significantly decreases the trap density of the perovskite film by forming interactions with the under-coordinated Pb2+ ions and effectively suppresses the non-radiative recombination in the resulting PSC. In addition, CFPMAI surface passivation facilitates the optimization of energy-level alignment at the CsPbI2Br perovskite/[6,6]-phenyl C61 butyric acid methyl ester interface, resulting in improved charge extraction from the perovskite to the charge transport layer. Consequently, the optimized inverted CsPbI2Br device exhibits a markedly improved champion efficiency of 14.43% with a Voc of 1.12 V, a Jsc of 16.31 mA/cm2, and a fill factor of 79.02%, compared to the 10.92% (Voc of 0.95 V) efficiency of the control device. This study confirms the importance of substituent groups on surface passivation molecules for effective passivation of defects and optimization of energy levels, particularly for Voc improvement.

1.
Y.
Zhao
and
K.
Zhu
, “
Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications
,”
Chem. Soc. Rev.
45
,
655
689
(
2016
).
2.
H.
Min
,
M.
Kim
,
S. U.
Lee
,
H.
Kim
,
G.
Kim
,
K.
Choi
,
J. H.
Lee
, and
S. I.
Seok
, “
Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide
,”
Science
366
,
749
753
(
2019
).
3.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
,
6050
6051
(
2009
).
4.
J.
Jeong
,
M.
Kim
,
J.
Seo
,
H.
Lu
,
P.
Ahlawat
,
A.
Mishra
,
Y.
Yang
,
M. A.
Hope
,
F. T.
Eickemeyer
,
M.
Kim
,
Y. J.
Yoon
,
I. W.
Choi
,
B. P.
Darwich
,
S. J.
Choi
,
Y.
Jo
,
J. H.
Lee
,
B.
Walker
,
S. M.
Zakeeruddin
,
L.
Emsley
,
U.
Rothlisberger
,
A.
Hagfeldt
,
D. S.
Kim
,
M.
Grätzel
, and
J. Y.
Kim
, “
Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
,”
Nature
592
,
381
385
(
2021
).
6.
A.
Ho-Baillie
,
M.
Zhang
,
C. F. J.
Lau
,
F. J.
Ma
, and
S.
Huang
, “
Untapped potentials of inorganic metal halide perovskite solar cells
,”
Joule
3
,
938
955
(
2019
).
7.
H.
Wang
,
Z.
Dong
,
H.
Liu
,
W.
Li
,
L.
Zhu
, and
H.
Chen
, “
Roles of organic molecules in inorganic CsPbX3 perovskite solar cells
,”
Adv. Energy Mater.
11
,
2002940
(
2020
).
8.
X.
Liu
,
J.
Li
,
X.
Wang
, and
D.
Yang
, “
Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications
,”
Mater. Today
61
,
191
217
(
2022
).
9.
X.
Liu
,
J.
Li
,
X.
Cui
,
X.
Wang
, and
D.
Yang
, “
Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells
,”
RSC Adv.
12
,
32925
32948
(
2022
).
10.
S. Q.
Sun
,
X.
Xu
,
Q.
Sun
,
Q.
Yao
,
Y.
Cai
,
X. Y.
Li
,
Y. L.
Xu
,
W.
He
,
M.
Zhu
,
X.
Lv
,
F. R.
Lin
,
A. K. Y.
Jen
,
T.
Shi
,
H. L.
Yip
,
M. K.
Fung
, and
Y. M.
Xie
, “
All-inorganic perovskite-based monolithic perovskite/organic tandem solar cells with 23.21% efficiency by dual-interface engineering
,”
Adv. Energy Mater.
13
,
2204347
(
2023
).
11.
X.
Liu
,
J.
Li
,
X.
Cui
,
X.
Wang
, and
D.
Yang
, “
The progress and efficiency of CsPbI2Br perovskite solar cells
,”
J. Mater. Chem. C
11
,
426
455
(
2023
).
12.
W. S.
Yang
,
B. W.
Park
,
E. H.
Jung
,
N. J.
Jeon
,
Y. C.
Kim
,
D. U.
Lee
,
S. S.
Shin
,
J.
Seo
,
E. K.
Kim
,
J. H.
Noh
, and
S. I.
Seok
, “
Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells
,”
Science
356
,
1376
1379
(
2017
).
13.
T.
Leijtens
,
K. A.
Bush
,
R.
Prasanna
, and
M. D.
McGehee
, “
Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
,”
Nat. Energy
3
,
828
838
(
2018
).
14.
F.
Wang
,
S.
Bai
,
W.
Tress
,
A.
Hagfeldt
, and
F.
Gao
, “
Defects engineering for high-performance perovskite solar cells
,”
npj Flexible Electron.
2
,
22
(
2018
).
15.
Y.
Shao
,
Y.
Yuan
, and
J.
Huang
, “
Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells
,”
Nat. Energy
1
,
15001
(
2016
).
16.
J.
Chen
and
N. G.
Park
, “
Materials and methods for interface engineering toward stable and efficient perovskite solar cells
,”
ACS Energy Lett.
5
,
2742
2786
(
2020
).
17.
J. S.
Park
,
S.
Kim
,
Z.
Xie
, and
A.
Walsh
, “
Point defect engineering in thin-film solar cells
,”
Nat. Rev. Mater.
3
,
194
210
(
2018
).
18.
S.
Yang
,
Y.
Duan
,
Z.
Liu
, and
S.
Liu
, “
Recent advances in CsPbX3 perovskite solar cells: Focus on crystallization characteristics and controlling strategies
,”
Adv. Energy Mater.
13
,
2201733
(
2023
).
19.
X.
Zheng
,
B.
Chen
,
J.
Dai
,
Y.
Fang
,
Y.
Bai
,
Y.
Lin
,
H.
Wei
,
X. C.
Zeng
, and
J.
Huang
, “
Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
,”
Nat. Energy
2
,
17102
(
2017
).
20.
Z.
Yan
,
D.
Wang
,
Y.
Jing
,
X.
Wang
,
H.
Zhang
,
X.
Liu
,
S.
Wang
,
C.
Wang
,
W.
Sun
,
J.
Wu
, and
Z.
Lan
, “
Surface dipole affords high-performance carbon-based CsPbI2Br perovskite solar cells
,”
Chem. Eng. J.
433
,
134611
(
2022
).
21.
X.
Zhang
,
N.
Gao
,
Y.
Li
,
L.
Xie
,
X.
Yu
,
X.
Lu
,
X.
Gao
,
J.
Gao
,
L.
Shui
,
S.
Wu
, and
J. M.
Liu
, “
A solution-processed dopant-free tin phthalocyanine (SnPc) hole transport layer for efficient and stable carbon-based CsPbI2Br planar perovskite solar cells prepared by a low-temperature process
,”
ACS Appl. Energy Mater.
3
,
7832
7843
(
2020
).
22.
F.
Yu
,
Q.
Han
,
L.
Wang
,
S.
Yang
,
X.
Cai
,
C.
Zhang
, and
T.
Ma
, “
Surface management for carbon-based CsPbI2Br perovskite solar cell with 14% power conversion efficiency
,”
Sol. RRL
5
,
2100404
(
2021
).
23.
A.
Wang
,
X.
Deng
,
J.
Wang
,
S.
Wang
,
X.
Niu
,
F.
Hao
, and
L.
Ding
, “
Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells
,”
Nano Energy
81
,
105631
(
2021
).
24.
H.
Zhang
,
W.
Xiang
,
X.
Zuo
,
X.
Gu
,
S.
Zhang
,
Y.
Du
,
Z.
Wang
,
Y.
Liu
,
H.
Wu
,
P.
Wang
,
Q.
Cui
,
H.
Su
,
Q.
Tian
, and
S.
Liu
, “
Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells
,”
Angew. Chem., Int. Ed.
62
,
e202216634
(
2022
).
25.
X.
Gu
,
W.
Xiang
,
Q.
Tian
, and
S.
Liu
, “
Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells
,”
Angew. Chem., Int. Ed.
60
,
23164
23170
(
2021
).
26.
J.
Zhuang
,
P.
Mao
,
Y.
Luan
,
X.
Yi
,
Z.
Tu
,
Y.
Zhang
,
Y.
Yi
,
Y.
Wei
,
N.
Chen
,
T.
Lin
,
F.
Wang
,
C.
Li
, and
J.
Wang
, “
Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide
,”
ACS Energy Lett.
4
,
2913
2921
(
2019
).
27.
S.
Akin
,
B.
Dong
,
L.
Pfeifer
,
Y.
Liu
,
M.
Graetzel
, and
A.
Hagfeldt
, “
Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance
,”
Adv. Sci.
8
,
2004593
(
2021
).
28.
S.
Yang
,
J.
Wen
,
Z.
Liu
,
Y.
Che
,
J.
Xu
,
J.
Wang
,
D.
Xu
,
N.
Yuan
,
J.
Ding
,
Y.
Duan
, and
S.
Liu
, “
A key 2D intermediate phase for stable high-efficiency CsPbI2Br perovskite solar cells
,”
Adv. Energy Mater.
12
,
2103019
(
2022
).
29.
T.
Ozturk
,
E.
Akman
,
A. E.
Shalan
, and
S.
Akin
, “
Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%
,”
Nano Energy
87
,
106157
(
2021
).
30.
X.
Liu
,
Y.
Xiao
,
Q.
Zeng
,
J.
Jiang
, and
Y.
Li
, “
Large-area organic-free perovskite solar cells with high thermal stability
,”
J. Phys. Chem. Lett.
10
,
6382
6388
(
2019
).
31.
X.
Liu
,
J.
Jiang
,
F.
Wang
,
Y.
Xiao
,
I. D.
Sharp
, and
Y.
Li
, “
High photovoltage inverted planar heterojunction perovskite solar cells with all-inorganic selective contact layers
,”
ACS Appl. Mater. Interfaces
11
,
46894
46901
(
2019
).
32.
R.
Lin
,
K.
Xiao
,
Z.
Qin
,
Q.
Han
,
C.
Zhang
,
M.
Wei
,
M. I.
Saidaminov
,
Y.
Gao
,
J.
Xu
,
M.
Xiao
,
A.
Li
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
, “
Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink
,”
Nat. Energy
4
,
864
873
(
2019
).
33.
B.
Li
and
W.
Zhang
, “
Improving the stability of inverted perovskite solar cells towards commercialization
,”
Commun. Mater.
3
,
65
(
2022
).
34.
Z.
Yang
,
W.
Zhang
,
S.
Wu
,
H.
Zhu
,
Z.
Liu
,
Z.
Liu
,
Z.
Jiang
,
R.
Chen
,
J.
Zhou
,
Q.
Lu
,
Z.
Xiao
,
L.
Shi
,
H.
Chen
,
L. K.
Ono
,
S.
Zhang
,
Y.
Zhang
,
Y.
Qi
,
L.
Han
, and
W.
Chen
, “
Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module
,”
Sci. Adv.
7
,
eabg3749
(
2021
).
35.
C.
Liu
,
W.
Li
,
C.
Zhang
,
Y.
Ma
,
J.
Fan
, and
Y.
Mai
, “
All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%
,”
J. Am. Chem. Soc.
140
,
3825
3828
(
2018
).
36.
J.
Zhang
,
Z.
Pan
,
R.
Zhao
,
X.
Hou
,
X.
Zhang
,
Z.
Tang
,
Y.
Zhang
,
Y.
Wu
,
W.
Liu
, and
J.
Gao
,
QBICS: Quantum Biology, Informatics and Chemical Science
(
Shenzhen Bay Laboratory
,
Shenzhen, China
,
2023
), http://Qbics.info.
37.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
38.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
39.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
40.
J.
Zhang
, “
LIBRETA: Computerized optimization and code synthesis for electron repulsion integral evaluation
,”
J. Chem. Theory Comput.
14
,
572
587
(
2018
).
41.
J.
Zhang
and
T.
Lu
, “
Efficient evaluation of electrostatic potential with computerized optimized code
,”
Phys. Chem. Chem. Phys.
23
,
20323
20328
(
2021
).
42.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
43.
See http://www.CP2K.org/ for CP2K is a freely available (GPL) quantum chemistry and solid state physics program package, to perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems.
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
45.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
46.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
, “
A hybrid Gaussian and plane wave density functional scheme
,”
Mol. Phys.
92
,
477
488
(
1997
).
47.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
48.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
49.
L.
Bengtsson
, “
Dipole correction for surface supercell calculations
,”
Phys. Rev. B
59
,
12301
12304
(
1999
).
50.
S.
Fu
,
X.
Li
,
L.
Wan
,
Y.
Wu
,
W.
Zhang
,
Y.
Wang
,
Q.
Bao
, and
J.
Fang
, “
Efficient passivation with lead pyridine-2-carboxylic for high-performance and stable perovskite solar cells
,”
Adv. Energy Mater.
9
,
1901852
(
2019
).
51.
W.
Zhang
,
J.
Xiong
,
J.
Li
, and
W. A.
Daoud
, “
Guanidinium passivation for air-stable rubidium-incorporated Cs(1−x)RbxPbI2Br inorganic perovskite solar cells
,”
Sol. RRL
4
,
2000112
(
2020
).
52.
S.
Fu
,
W.
Zhang
,
X.
Li
,
L.
Wan
,
Y.
Wu
,
L.
Chen
,
X.
Liu
, and
J.
Fang
, “
Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells
,”
ACS Energy Lett.
5
,
676
684
(
2020
).
53.
Y.
Tu
,
X.
Yang
,
R.
Su
,
D.
Luo
,
Y.
Cao
,
L.
Zhao
,
T.
Liu
,
W.
Yang
,
Y.
Zhang
,
Z.
Xu
,
Q.
Liu
,
J.
Wu
,
Q.
Gong
,
F.
Mo
, and
R.
Zhu
, “
Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells
,”
Adv. Mater.
30
,
1805085
(
2018
).
54.
R. H.
Bube
, “
Trap density determination by space-charge-limited currents
,”
J. Appl. Phys.
33
,
1733
1737
(
1962
).
55.
Z.
Yang
,
A.
Surrente
,
K.
Galkowski
,
A.
Miyata
,
O.
Portugall
,
R. J.
Sutton
,
A. A.
Haghighirad
,
H. J.
Snaith
,
D. K.
Maude
,
P.
Plochocka
, and
R. J.
Nicholas
, “
Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites
,”
ACS Energy Lett.
2
,
1621
1627
(
2017
).
56.
A.
Kausar
,
A.
Sattar
,
C.
Xu
,
S.
Zhang
,
Z.
Kang
, and
Y.
Zhang
, “
Advent of alkali metal doping: A roadmap for the evolution of perovskite solar cells
,”
Chem. Soc. Rev.
50
,
2696
2736
(
2021
).
57.
Z.
Xiao
,
Q.
Dong
,
C.
Bi
,
Y.
Shao
,
Y.
Yuan
, and
J.
Huang
, “
Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement
,”
Adv. Mater.
26
,
6503
6509
(
2014
).
58.
M.
Tai
,
Y.
Zhou
,
X.
Yin
,
J.
Han
,
Q.
Zhang
,
Y.
Zhou
, and
H.
Lin
, “
In situ formation of a 2D/3D heterostructure for efficient and stable CsPbI2Br solar cells
,”
J. Mater. Chem. A
7
,
22675
22682
(
2019
).
59.
X.
Zhang
,
D.
Zhang
,
Y.
Zhou
,
Y.
Du
,
J.
Jin
,
Z.
Zhu
,
Z.
Wang
,
X.
Cui
,
J.
Li
,
S.
Wu
,
J.
Zhang
, and
Q.
Tai
, “
Fluorinated interfaces for efficient and stable low-temperature carbon-based CsPbI2Br perovskite solar cells
,”
Adv. Funct. Mater.
32
,
2205478
(
2022
).
60.
R. J.
Sutton
,
G. E.
Eperon
,
L.
Miranda
,
E. S.
Parrott
,
B. A.
Kamino
,
J. B.
Patel
,
M. T.
Hörantner
,
M. B.
Johnston
,
A. A.
Haghighirad
,
D. T.
Moore
, and
H. J.
Snaith
, “
Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells
,”
Adv. Energy Mater.
6
,
1502458
(
2016
).
61.
S.
Zhang
,
H.
Si
,
W.
Fan
,
M.
Shi
,
M.
Li
,
C.
Xu
,
Z.
Zhang
,
Q.
Liao
,
A.
Sattar
,
Z.
Kang
, and
Y.
Zhang
, “
Graphdiyne: Bridging SnO2 and perovskite in planar solar cells
,”
Angew. Chem., Int. Ed.
59
,
11573
11582
(
2020
).
62.
B.
Chen
,
P. N.
Rudd
,
S.
Yang
,
Y.
Yuan
, and
J.
Huang
, “
Imperfections and their passivation in halide perovskite solar cells
,”
Chem. Soc. Rev.
48
,
3842
3867
(
2019
).
63.
L.
Yan
,
Q.
Xue
,
M.
Liu
,
Z.
Zhu
,
J.
Tian
,
Z.
Li
,
Z.
Chen
,
Z.
Chen
,
H.
Yan
,
H. L.
Yip
, and
Y.
Cao
, “
Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%
,”
Adv. Mater.
30
,
1802509
(
2018
).
64.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
,
X.
Yang
,
Y.
Chen
,
Z.
Chu
,
Q.
Ye
,
X.
Li
,
Z.
Yin
, and
J.
You
, “
Surface passivation of perovskite film for efficient solar cells
,”
Nat. Photonics
13
,
460
466
(
2019
).
65.
W.
Zhang
,
J.
Xiong
,
J.
Li
, and
W. A.
Daoud
, “
Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%
,”
Small
16
,
2001535
(
2020
).
66.
G.
Zhang
,
P.
Xie
,
Z.
Huang
,
Z.
Yang
,
Z.
Pan
,
Y.
Fang
,
H.
Rao
, and
X.
Zhong
, “
Modification of energy level alignment for boosting carbon-based CsPbI2Br solar cells with 14% certified efficiency
,”
Adv. Funct. Mater.
31
,
2011187
(
2021
).
67.
W.
Chen
,
H.
Chen
,
G.
Xu
,
R.
Xue
,
S.
Wang
,
Y.
Li
, and
Y.
Li
, “
Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells
,”
Joule
3
,
191
204
(
2019
).

Supplementary Material

You do not currently have access to this content.