A method for characterizing the topological fluctuations in liquids is proposed. This approach exploits the concept of the weighted gyration tensor of a collection of particles and permits the definition of a local configurational unit (LCU). The first principal axis of the gyration tensor serves as the director of the LCU, which can be tracked and analyzed by molecular dynamics simulations. Analysis of moderately supercooled Kob–Andersen mixtures suggests that orientational relaxation of the LCU closely follows viscoelastic relaxation and exhibits a two-stage behavior. The slow relaxing component of the LCU corresponds to the structural, Maxwellian mechanical relaxation. Additionally, it is found that the mean curvature of the LCUs is approximately zero at the Maxwell relaxation time with the Gaussian curvature being negative. This observation implies that structural relaxation occurs when the configurationally stable and destabilized regions interpenetrate each other in a bicontinuous manner. Finally, the mean and Gaussian curvatures of the LCUs can serve as reduced variables for the shear stress correlation, providing a compelling proof of the close connection between viscoelastic relaxation and topological fluctuations in glass-forming liquids.

1.
J. C.
Maxwell
,
Philos. Trans. R. Soc. London
157
,
49
(
1867
).
2.
R.
Yamamoto
and
A.
Onuki
,
Phys. Rev. E
58
,
3515
(
1998
).
3.
T.
Iwashita
,
D. M.
Nicholson
, and
T.
Egami
,
Phys. Rev. Lett.
110
,
205504
(
2013
).
4.
J.
Ashwin
and
A.
Sen
,
Phys. Rev. Lett.
114
,
055002
(
2015
).
5.
Z. W.
Wu
,
W.
Kob
,
W. H.
Wang
, and
L.
Xu
,
Nat. Commun.
9
,
5334
(
2018
).
6.
A. S.
Keys
,
A. R.
Abate
,
S. C.
Glotzer
, and
D. J.
Durian
,
Nat. Phys.
3
,
260
(
2007
).
7.
A. C. Y.
Liu
et al,
Sci. Adv.
8
,
eabn0681
(
2022
).
8.
H.
Tong
,
S.
Sengupta
, and
H.
Tanaka
,
Nat. Commun.
11
,
4863
(
2020
).
9.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1958
).
11.
J.
Hubbard
and
J.
Beeby
,
J. Phys. C: Solid State Phys.
2
,
556
(
1969
).
12.
J.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
McGraw-Hill
,
1980
).
13.
U.
Balucani
and
M.
Zoppi
,
Dynamics of the Liquid State
(
Clarendon Press
,
Oxford
,
1995
).
14.
Z.
Shen
et al,
Phys. Rev. E.
103
,
022609
(
2021
).
15.
Z.
Shen
,
J.-M. Y.
Carrillo
,
B. G.
Sumpter
, and
Y.
Wang
,
J. Chem. Phys.
159
,
114501
(
2023
).
16.
C.
Dasgupta
,
A.
Indrani
,
S.
Ramaswamy
, and
M.
Phani
,
Europhys. Lett.
15
,
307
(
1991
).
17.
S. C.
Glotzer
,
V. N.
Novikov
, and
T. B.
Schrøder
,
J. Chem. Phys.
112
,
509
(
2000
).
18.
N.
Lačević
,
F. W.
Starr
,
T. B.
Schrøder
, and
S. C.
Glotzer
,
J. Chem. Phys.
119
,
7372
(
2003
).
19.
20.
C.
Toninelli
,
M.
Wyart
,
L.
Berthier
,
G.
Biroli
, and
J.-P.
Bouchaud
,
Phys. Rev. E
71
,
041505
(
2005
).
21.
L.
Berthier
et al,
J. Chem. Phys.
126
,
184503
(
2007
).
22.
E.
Flenner
,
H.
Staley
, and
G.
Szamel
,
Phys. Rev. Lett.
112
,
097801
(
2014
).
23.
C. P.
Royall
and
S. R.
Williams
,
Phys. Rep.
560
,
1
(
2015
).
24.
D. E.
Neuenschwander
,
Tensor Calculus for Physics: A Concise Guide
(
Johns Hopkins University Press
,
2014
).
25.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. Lett.
73
,
1376
(
1994
).
26.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E.
51
,
4626
(
1995
).
27.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
52
,
4134
(
1995
).
28.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
29.
A.
Kushima
et al,
J. Chem. Phys.
130
,
224504
(
2009
).
30.
A.
Kushima
et al,
J. Chem. Phys.
131
,
164505
(
2009
).
31.
S.
Abraham
and
P.
Harrowell
,
J. Chem. Phys.
137
,
014506
(
2012
).
32.
M.
Ediger
and
P.
Harrowell
,
J. Chem. Phys.
137
,
080901
(
2012
).
33.
35.
LAMMPS website: https://www.lammps.org.
36.
37.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
,
Comput. Phys. Commun.
182
,
898
(
2011
).
38.
A. P.
Thompson
et al,
Comput. Phys. Commun.
271
,
108171
(
2022
).
39.
B. E.
Eichinger
,
Macromolecules
13
,
1
(
1980
).
40.
B. E.
Eichinger
,
Macromolecules
18
,
211
(
1985
).
41.
G.-R.
Huang
et al,
J. Phys. Chem. Lett.
10
,
3978
(
2019
).
42.
H.
Wiener
,
J. Am. Chem. Soc.
69
,
17
(
1947
).
43.
S.
Nikolić
and
N.
Trinajstić
,
Croat. Chem. Acta
68
,
105
(
1995
).
44.
D. H.
Rouvray
, “
The rich legacy of half a century of the Wiener index
,” in
Topology in Chemistry
, edited by
D.
Rouvray
and
R.
King
(
Woodhead Publishing
,
Cambridge
,
2002
), pp.
16
37
.
45.
G.
Wei
and
B.
Eichinger
,
J. Chem. Phys.
93
,
1430
(
1990
).
47.
P.-G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Clarendon Press
,
1995
).
48.
R. D.
Mountain
and
R.
Zwanzig
,
J. Chem. Phys.
44
,
2777
(
1966
).
50.
M.
Nauroth
and
W.
Kob
,
Phys. Rev. E
55
,
657
(
1997
).
51.
K.
Kim
and
S.
Saito
,
J. Phys. Soc. Jpn.
79
,
093601
(
2010
).
52.
H.
Mizuno
and
R.
Yamamoto
,
Eur. Phys. J. E
35
,
29
(
2012
).
53.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics
(
World Scientific
,
2005
).
54.
J.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids: with Applications to Soft Matter
(
Academic Press
,
2013
).
55.
U.
Pedersen
,
T. B.
Schrøder
, and
J.
Dyre
,
Phys. Rev. Lett.
120
,
165501
(
2018
).
56.
59.
M.
Priya
,
N.
Bidhoodi
, and
S. P.
Das
,
Phys. Rev. E
92
,
062308
(
2015
).
60.
N.
Bidhoodi
and
S. P.
Das
,
Phys. Rev. E
92
,
062309
(
2015
).
61.
A.
Zaccone
and
E.
Scossa-Romano
,
Phys. Rev. B
83
,
184205
(
2011
).
62.
O. R.
Musin
,
Discrete Comput. Geom.
35
,
375
(
2006
).
64.
T.
Zemb
, “
Scattering by microemulsions
,” in
Neutron, X-Rays and Light. Scattering Methods Applied to Soft Condensed Matter
, edited by
T.
Zemb
and
P.
Lindner
(
North Holland
,
Amsterdam
,
2002
), pp.
317
350
.
65.
E.
Kreyszig
,
Differential Geometry
(
University of Toronto Press
,
1964
).
66.
B.
O’neill
,
Elementary Differential Geometry
(
Academic Press
,
Burlington
,
2006
).
67.
M.
Meyer
,
M.
Desbrun
,
P.
Schröder
, and
A.
Barr
, “
Discrete differential-geometry operators for triangulated 2-manifolds
,” in
Visualization and Mathematics III. Mathematics and Visualization
, edited by
H.
Hege
and
K.
Polthier
(
Springer
,
2003
).
68.
S.
Hyde
,
The Language of Shape: The Role of Curvature in Condensed Matter–Physics, Chemistry and Biology
(
Elsevier
,
1997
).
69.
D.
Choy
and
S.-H.
Chen
,
Phys. Rev. E
61
,
4148
(
2000
).
70.
I.
Douglass
and
J.
Dyre
,
Phys. Rev. E
106
,
054615
(
2022
).
71.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon Press
,
1954
).
72.
73.
V.
Vitek
and
T.
Egami
,
Phys. Status Solidi B
144
,
145
(
1987
).
74.
M.
Zhou
,
Proc. R. Soc. London, Ser. A
459
,
2347
(
2003
).
75.
C.
Scalliet
,
B.
Guiselin
, and
L.
Berthier
,
Phys. Rev. X
12
,
041028
(
2022
).
76.
M.
Falk
and
J.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
77.
G.
Appignanesi
,
J.
Rodríguez Fris
,
R.
Montani
, and
W.
Kob
,
Phys. Rev. Lett.
96
,
057801
(
2006
).
You do not currently have access to this content.