A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV–VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].

1.
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
Chem. Soc. Rev.
25
,
321
(
1996
).
2.
N.
Ismail
,
L.
Blancafort
,
M.
Olivucci
,
B.
Kohler
, and
M. A.
Robb
,
J. Am. Chem. Soc.
124
,
6818
(
2002
).
3.
M. A.
Robb
,
Theoretical Chemistry for Electronic Excited States
(
Royal Society of Chemistry
,
2018
), Vol.
12
.
4.
J. C.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
5.
M. S.
Schuurman
and
A.
Stolow
,
Annu. Rev. Phys. Chem.
69
,
427
(
2018
).
6.
S.
Singh
,
W.
Jones
,
W.
Siebrand
,
B.
Stoicheff
, and
W.
Schneider
,
J. Chem. Phys.
42
,
330
(
1965
).
7.
C.
Swenberg
and
W.
Stacy
,
Chem. Phys. Lett.
2
,
327
(
1968
).
8.
N.
Geacintov
,
M.
Pope
, and
F.
Vogel
,
Phys. Rev. Lett.
22
,
593
(
1969
).
9.
R.
Merrifield
,
P.
Avakian
, and
R.
Groff
,
Chem. Phys. Lett.
3
,
386
(
1969
).
10.
R.
Merrifield
,
J. Chem. Phys.
48
,
4318
(
1968
).
11.
R.
Johnson
and
R.
Merrifield
,
Phys. Rev. B
1
,
896
(
1970
).
13.
R.
Merrifield
,
Pure Appl. Chem.
27
,
481
(
1971
).
14.
G.
Klein
and
R.
Voltz
,
Int. J. Radiat. Phys. Chem.
7
,
155
(
1975
).
15.
C. E.
Swenberg
and
N.
Geacintov
,
Organic Molecular Photophysics
(
Wiley
,
1973
), Vol.
1
, p.
489
.
16.
T.
Zeng
,
R.
Hoffmann
, and
N.
Ananth
,
J. Am. Chem. Soc.
136
,
5755
(
2014
).
17.
T.
Zeng
,
N.
Ananth
, and
R.
Hoffmann
,
J. Am. Chem. Soc.
136
,
12638
(
2014
).
18.
T.
Zeng
and
P.
Goel
,
J. Phys. Chem. Lett.
7
,
1351
(
2016
).
20.
R.
Pollice
,
P.
Friederich
,
C.
Lavigne
,
G.
dos Passos Gomes
, and
A.
Aspuru-Guzik
,
Matter
4
,
1654
(
2021
).
21.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Chem. Phys.
123
,
084106
(
2005
).
22.
D. V.
Makhov
,
C.
Symonds
,
S.
Fernandez-Alberti
, and
D. V.
Shalashilin
,
Chem. Phys.
493
,
200
(
2017
).
23.
A. J.
Jenkins
,
K. E.
Spinlove
,
M.
Vacher
,
G. A.
Worth
, and
M. A.
Robb
,
J. Chem. Phys.
149
,
094108
(
2018
).
24.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
25.
M.
Richter
,
P.
Marquetand
,
J.
González-Vázquez
,
I.
Sola
, and
L.
González
,
J. Chem. Theory Comput.
7
,
1253
(
2011
).
26.
C.
Rauer
,
J. J.
Nogueira
,
P.
Marquetand
, and
L.
González
,
J. Am. Chem. Soc.
138
,
15911
(
2016
).
27.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
,
J. Phys. Chem. A
104
,
5161
(
2000
).
28.
H. R.
Hudock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martinez
,
J. Phys. Chem. A
111
,
8500
(
2007
).
29.
M.
Williams
,
R.
Forbes
,
H.
Weir
,
K.
Veyrinas
,
R. J.
MacDonell
,
A. E.
Boguslavskiy
,
M. S.
Schuurman
,
A.
Stolow
, and
T. J.
Martinez
,
J. Phys. Chem. Lett.
12
,
6363
(
2021
).
30.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martinez
,
J. Phys. Chem. A
116
,
2808
(
2012
).
31.
B. F.
Curchod
,
C.
Rauer
,
P.
Marquetand
,
L.
González
, and
T. J.
Martínez
,
J. Chem. Phys.
144
,
101102
(
2016
).
32.
I.
Burghardt
,
M.
Nest
, and
G. A.
Worth
,
J. Chem. Phys.
119
,
5364
(
2003
).
33.
G. W.
Richings
,
I.
Polyak
,
K. E.
Spinlove
,
G. A.
Worth
,
I.
Burghardt
, and
B.
Lasorne
,
Int. Rev. Phys. Chem.
34
,
269
(
2015
).
34.
G.
Christopoulou
,
A.
Freibert
, and
G. A.
Worth
,
J. Chem. Phys.
154
,
124127
(
2021
).
35.
M.
Richter
,
P.
Marquetand
,
J.
González-Vázquez
,
I.
Sola
, and
L.
González
,
J. Chem. Theory Comput.
8
,
374
(
2012
).
36.
J. J.
Bajo
,
J.
González-Vázquez
,
I. R.
Sola
,
J.
Santamaria
,
M.
Richter
,
P.
Marquetand
, and
L.
González
,
J. Phys. Chem. A
116
,
2800
(
2012
).
37.
S.
Mai
,
T.
Müller
,
F.
Plasser
,
P.
Marquetand
,
H.
Lischka
, and
L.
González
,
J. Chem. Phys.
141
,
074105
(
2014
).
38.
S.
Mai
,
P.
Marquetand
, and
L.
González
,
Int. J. Quantum Chem.
115
,
1215
(
2015
).
39.
S.
Mai
,
F.
Plasser
,
P.
Marquetand
, and
L.
González
,
Attosecond Molecular Dynamics
(
Royal Society of Chemistry
,
2018
), Vol.
13
, p.
348
.
40.
S.
Grimme
,
Rev. Comput. Chem.
20
,
153
(
2004
).
41.
A.
Hazra
,
H. H.
Chang
, and
M.
Nooijen
,
J. Chem. Phys.
121
,
2125
(
2004
).
42.
M.
Dierksen
and
S.
Grimme
,
J. Chem. Phys.
122
,
244101
(
2005
).
43.
H.-C.
Jankowiak
,
J.
Stuber
, and
R.
Berger
,
J. Chem. Phys.
127
,
234101
(
2007
).
44.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Theory Comput.
9
,
4097
(
2013
).
45.
B.
de Souza
,
G.
Farias
,
F.
Neese
, and
R.
Izsak
,
J. Chem. Theory Comput.
15
,
1896
(
2019
).
46.
F. V.
Heldmaier
,
N. J.
Coughlan
,
A.
Haack
,
R.
Huard
,
M.
Guna
,
B. B.
Schneider
,
J. C. Y.
Le Blanc
,
J. L.
Campbell
,
M.
Nooijen
, and
W. S.
Hopkins
,
Phys. Chem. Chem. Phys.
23
,
19892
(
2021
).
47.
N.
Mashmoushi
,
D. R.
Juhász
,
N. J.
Coughlan
,
B. B.
Schneider
,
J. C. Y.
Le Blanc
,
M.
Guna
,
B. E.
Ziegler
,
J. L.
Campbell
, and
W. S.
Hopkins
,
J. Phys. Chem. A
125
,
8187
(
2021
).
48.
Y.
Wang
,
Y.
Liu
, and
I. B.
Bersuker
,
Phys. Chem. Chem. Phys.
21
,
10677
(
2019
).
49.
M. K.
Etherington
,
J.
Gibson
,
H. F.
Higginbotham
,
T. J.
Penfold
, and
A. P.
Monkman
,
Nat. Commun.
7
,
13680
(
2016
).
50.
J. P.
Zobel
,
A. M.
Wernbacher
, and
L.
González
,
Angew. Chem., Int. Ed.
62
,
e202217620
(
2023
).
51.
S.
Shi
,
M. C.
Jung
,
C.
Coburn
,
A.
Tadle
,
D. M. R.
Sylvinson
,
P. I.
Djurovich
,
S. R.
Forrest
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
141
,
3576
(
2019
).
52.
G.
Herzberg
,
Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
van Nostrand
,
1966
), Vol.
3
.
53.
H.
Koppel
,
W.
Domcke
, and
L.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
54.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
55.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
56.
A.
Hazra
and
M.
Nooijen
,
Phys. Chem. Chem. Phys.
7
,
1759
(
2005
).
57.
A.
Hazra
and
M.
Nooijen
,
J. Chem. Phys.
122
,
204327
(
2005
).
58.
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Theory, Computation and Experiment
(
World Scientific
,
2011
), Vol.
17
.
59.
K.
Sharma
,
T. A.
Miller
, and
J. F.
Stanton
,
Int. Rev. Phys. Chem.
40
,
165
(
2021
).
60.
J.
Neugebauer
,
E. J.
Baerends
, and
M.
Nooijen
,
J. Chem. Phys.
121
,
6155
(
2004
).
61.
J.
Neugebauer
,
E. J.
Baerends
, and
M.
Nooijen
,
J. Phys. Chem. A
109
,
1168
(
2005
).
62.
J. F.
Stanton
,
J. Chem. Phys.
126
,
134309
(
2007
).
63.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
64.
K.
Klein
,
E.
Garand
,
T.
Ichino
,
D. M.
Neumark
,
J.
Gauss
, and
J. F.
Stanton
,
Theor. Chem. Acc.
129
,
527
(
2011
).
65.
A.
Trofimov
,
A.
Skitnevskaya
,
E.
Grigoricheva
,
E.
Gromov
, and
H.
Köppel
,
J. Chem. Phys.
153
,
164307
(
2020
).
66.
M.
Yaghoubi Jouybari
,
Y.
Liu
,
R.
Improta
, and
F.
Santoro
,
J. Chem. Theory Comput.
16
,
5792
(
2020
).
67.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
68.
M. E.
Casida
and
M.
Huix-Rotllant
,
Annu. Rev. Phys. Chem.
63
,
287
(
2012
).
69.
B.
Moore
and
J.
Autschbach
,
J. Chem. Theory Comput.
9
,
4991
(
2013
).
70.
H.
Nakano
,
R.
Uchiyama
, and
K.
Hirao
,
J. Comput. Chem.
23
,
1166
(
2002
).
71.
M.
Miyajima
,
Y.
Watanabe
, and
H.
Nakano
,
J. Chem. Phys.
124
,
044101
(
2006
).
72.
R.
Ebisuzaki
,
Y.
Watanabe
, and
H.
Nakano
,
Chem. Phys. Lett.
442
,
164
(
2007
).
73.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
74.
R. J.
Bartlett
and
J. F.
Stanton
, “
Applications of Post-Hartree—Fock Methods: A Tutorial
,” in
Reviews in Computational Chemistry
(
Wiley
,
1994
), Vol. 5, pp. 69–165.
75.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
106
,
6441
(
1997
).
76.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
106
,
6449
(
1997
).
77.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
107
,
6812
(
1997
).
78.
H.
Köppel
,
W.
Domcke
, and
L.
Cederbaum
,
J. Chem. Phys.
74
,
2945
(
1981
).
79.
S.
Mahapatra
,
W.
Eisfeld
, and
H.
Köppel
,
Chem. Phys. Lett.
441
,
7
(
2007
).
80.
S.
Faraji
,
H.
Köppel
,
W.
Eisfeld
, and
S.
Mahapatra
,
Chem. Phys.
347
,
110
(
2008
).
81.
D. M.
Williams
and
W.
Eisfeld
,
J. Phys. Chem. A
124
,
7608
(
2020
).
82.
A. B.
Trofimov
,
A.
Skitnevskaya
,
E.
Grigoricheva
,
E.
Gromov
, and
H.
Köppel
,
J. Chem. Phys.
157
,
174309
(
2022
).
83.
T.
Ichino
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
130
,
174105
(
2009
).
84.
S.
Faraji
,
S.
Matsika
, and
A. I.
Krylov
,
J. Chem. Phys.
148
,
044103
(
2018
).
85.
86.
F.
Aleotti
,
D.
Aranda
,
M.
Yaghoubi Jouybari
,
M.
Garavelli
,
A.
Nenov
, and
F.
Santoro
,
J. Chem. Phys.
154
,
104106
(
2021
).
87.
D.
Aranda
and
F.
Santoro
,
J. Chem. Theory Comput.
17
,
1691
(
2021
).
88.
J. A.
Green
,
M.
Yaghoubi Jouybari
,
H.
Asha
,
F.
Santoro
, and
R.
Improta
,
J. Chem. Theory Comput.
17
,
4660
(
2021
).
89.

Based on the vibronic Hamiltonian and transition moments (dipole or more general).

90.
T.
Ichino
,
S. W.
Wren
,
K. M.
Vogelhuber
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
129
,
084310
(
2008
).
91.
M. S.
Schuurman
,
R. A.
Young
, and
D. R.
Yarkony
,
Chem. Phys.
347
,
57
(
2008
).
92.

Because the simple form of the vibronic Hamiltonian allows one to use (primitive) harmonic-oscillator basis sets.

93.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
94.
G.
Worth
,
M.
Beck
,
A.
Jäckle
,
H.
Meyer
,
F.
Otto
,
M.
Brill
, and
O.
Vendrell
,
User’s Guide
, Version8,
2000
.
95.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
,
The MCTDH Package
, Version 8.2,
2000
,
H.-D.
Meyer
, Version 8.3,
2002
, Version 8.4,
2007
, Used version: 8.4.23 (May 2022), see http://mctdh.uni-hd.de.
96.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
,
H.-D.
Meyer
,
F.
Otto
,
M.
Brill
, and
O.
Vendrell
, “
The Heidelberg MCTDH Package: A set of programs for multi-dimensional quantum dynamics
,”
User’s Guide
.
97.
G. W.
Richings
and
G. A.
Worth
,
J. Phys. Chem. A
119
,
12457
(
2015
).
98.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
99.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
100.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
101.
Q.
Meng
and
H.-D.
Meyer
,
J. Chem. Phys.
138
,
018908
(
2013
).
102.
H.
Wang
and
H.-D.
Meyer
,
J. Chem. Phys.
149
,
044119
(
2018
).
103.
M.
Nooijen
and
S.
Bao
,
Mol. Phys.
119
,
e1980832
(
2021
).
104.
M. D.
Prasad
,
J. Chem. Phys.
88
,
7005
(
1988
).
105.
G.
Sanyal
,
S. H.
Mandal
, and
D.
Mukherjee
,
Chem. Phys. Lett.
192
,
55
(
1992
).
106.
J. A.
Faucheaux
and
S.
Hirata
,
J. Chem. Phys.
143
,
134105
(
2015
).
107.
J. A.
Faucheaux
,
M.
Nooijen
, and
S.
Hirata
,
J. Chem. Phys.
148
,
054104
(
2018
).
108.
O.
Christiansen
,
J. Chem. Phys.
120
,
2149
(
2004
).
109.

The initial state in the simulation of absorption spectra is represented by |0⟩μ, where μ is a constant representing the electronic transition moment. For this reason, we can focus on an initial state represented by |0⟩.

110.
T. D.
Crawford
and
H. F.
Schaefer
III
, “
An Introduction to Coupled Cluster Theory for Computational Chemists
,” in
Reviews in Computational Chemistry
(Wiley,
2000
), Vol. 14, pp. 33–136.
111.

Divergence was not guaranteed, but with enough regularity (>90% of our testing), divergence was observed after propagating the ACF longer than 50 fs (in the full vibronic models).

112.

This initial condition can be further generalized to adapt to different experimental setups, but these generalizations are beyond the scope of this paper.

113.
N.
Raymond
and
S.
Bao
,
T-amplitudes
,
2020
, https://git.uwaterloo.ca/ngraymon/t-amplitudes/.
114.
N.
Raymond
and
L. H.
Price
,
Termfactory
,
2022
, https://github.com/ngraymon/termfactory/.
117.
Y. J.
Bomble
,
J. C.
Saeh
,
J. F.
Stanton
,
P. G.
Szalay
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
122
,
154107
(
2005
).
118.
M.
Musia
and
R. J.
Bartlett
,
Chem. Phys. Lett.
384
,
210
(
2004
).
119.
M.
Musial
and
R. J.
Bartlett
,
J. Chem. Phys.
119
,
1901
(
2003
).
120.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
121.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
48
,
15
(
1993
).
122.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
44
,
55
(
1992
).
123.
M.
Nooijen
and
A.
Hazra
, With contributions from
J. F.
Stanton
and
K.
Sattelmeyer
,
2003
.
124.
J.
Endicott
,
Generating vibronic coupling models and simulating photoelectron spectra
.
125.
M.
Nooijen
,
Vibronic model parameters, calculated by IP-EOMCC method, for generating photo-electron spectra
,
2011
.
126.

Since these two methods are fundamentally different, we do not anticipate that they will produce the exact same result. In particular, MCTDH results are subject to truncations of a finite basis set.

127.

Using the same input file settings as in the reference by Raab et al.54 

Supplementary Material

You do not currently have access to this content.