Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement.

1.
D.
Deamer
,
M.
Akeson
, and
D.
Branton
, “
Three decades of nanopore sequencing
,”
Nat. Biotechnol.
34
(
5
),
518
524
(
2016
).
2.
Y.
Huang
,
L.
Liu
,
C.
Luo
,
W.
Liu
,
X.
Lou
,
L.
Jiang
, and
F.
Xia
, “
Solid-state nanochannels for bio-marker analysis
,”
Chem. Soc. Rev.
52
(
18
),
6270
6293
(
2023
).
3.
Q.
Sun
,
Z.
Dai
,
X.
Meng
, and
F.-S.
Xiao
, “
Porous polymer catalysts with hierarchical structures
,”
Chem. Soc. Rev.
44
(
17
),
6018
6034
(
2015
).
4.
M.
Farrokhnia
,
A.
Safekordi
,
M.
Rashidzadeh
,
G.
Khanbabaei
,
R.
Akbari Anari
, and
M.
Rahimpour
, “
Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design
,”
J. Porous Mater.
23
(
5
),
1279
1295
(
2016
).
5.
B.-H.
Jeong
,
E. M. V.
Hoek
,
Y.
Yan
,
A.
Subramani
,
X.
Huang
,
G.
Hurwitz
,
A. K.
Ghosh
, and
A.
Jawor
, “
Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes
,”
J. Membr. Sci.
294
(
1–2
),
1
7
(
2007
).
6.
H.
Chen
and
M. E.
Poitzsch
, “
Dynamics of polymers flowing through porous media: Interplay of solvent properties, flow rates, and wetting
,”
Macromolecules
55
(
24
),
11068
11075
(
2022
).
7.
M. D.
Ediger
and
J. A.
Forrest
, “
Dynamics near free surfaces and the glass transition in thin polymer films: A view to the future
,”
Macromolecules
47
(
2
),
471
478
(
2013
).
8.
B.
Frank
,
A. P.
Gast
,
T. P.
Russell
,
H. R.
Brown
, and
C.
Hawker
, “
Polymer mobility in thin films
,”
Macromolecules
29
(
20
),
6531
6534
(
1996
).
9.
K.
Chrissopoulou
and
S. H.
Anastasiadis
, “
Effects of nanoscopic-confinement on polymer dynamics
,”
Soft Matter
11
(
19
),
3746
3766
(
2015
).
10.
C.-C.
Lin
,
S.
Gam
,
J. S.
Meth
,
N.
Clarke
,
K. I.
Winey
, and
R. J.
Composto
, “
Do attractive polymer–nanoparticle interactions retard polymer diffusion in nanocomposites?
,”
Macromolecules
46
(
11
),
4502
4509
(
2013
).
11.
S.
Jin
and
G. B.
McKenna
, “
Effect of nanoconfinement on polymer chain dynamics
,”
Macromolecules
53
(
22
),
10212
10216
(
2020
).
12.
R.
Kimmich
,
N.
Fatkullin
,
C.
Mattea
, and
E.
Fischer
, “
Polymer chain dynamics under nanoscopic confinements
,”
Magn. Reson. Imaging
23
(
2
),
191
196
(
2004
).
13.
D.
Richter
and
M.
Kruteva
, “
Polymer dynamics under confinement
,”
Soft Matter
15
(
37
),
7316
7349
(
2019
).
14.
M. T.
Bishop
,
K. H.
Langley
, and
F. E.
Karasz
, “
Dynamic light-scattering studies of polymer diffusion in porous materials: Linear polystyrene in porous glass
,”
Macromolecules
22
(
3
),
1220
1231
(
1989
).
15.
J. L.
Hor
,
H.
Wang
,
Z.
Fakhraai
, and
D.
Lee
, “
Effects of polymer–nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration
,”
Soft Matter
14
(
13
),
2438
2446
(
2018
).
16.
J. L.
Hor
,
H.
Wang
,
Z.
Fakhraai
, and
D.
Lee
, “
Effect of physical nanoconfinement on the viscosity of unentangled polymers during capillary rise infiltration
,”
Macromolecules
51
(
14
),
5069
5078
(
2018
).
17.
M.
Muthukumar
, “
Entropic barrier model for polymer diffusion in concentrated polymer solutions and random media
,”
J. Non-Cryst. Solids
131–133
,
654
666
(
1991
).
18.
N.
Manohar
,
K. J.
Stebe
, and
D.
Lee
, “
Effect of confinement on solvent-driven infiltration of the polymer into nanoparticle packings
,”
Macromolecules
53
(
15
),
6740
6746
(
2020
).
19.
C. Y.
Kong
and
M.
Muthukumar
, “
Polymer translocation through a nanopore. II. Excluded volume effect
,”
J. Chem. Phys.
120
(
7
),
3460
3466
(
2004
).
20.
R. B.
Venkatesh
,
T.
Zhang
,
N.
Manohar
,
K. J.
Stebe
,
R. A.
Riggleman
, and
D.
Lee
, “
Effect of polymer–nanoparticle interactions on solvent-driven infiltration of polymer (SIP) into nanoparticle packings: A molecular dynamics study
,”
Mol. Syst. Des. Eng.
5
(
3
),
666
674
(
2020
).
21.
P. J.
Park
and
W.
Sung
, “
Polymer translocation induced by adsorption
,”
J. Chem. Phys.
108
(
7
),
3013
3018
(
1998
).
22.
N.
Manohar
,
K. J.
Stebe
, and
D.
Lee
, “
Solvent-driven infiltration of polymer (SIP) into nanoparticle packings
,”
ACS Macro Lett.
6
(
10
),
1104
1108
(
2017
).
23.
P. J.
Park
and
W.
Sung
, “
Polymer release out of a spherical vesicle through a pore
,”
Phys. Rev. E
57
(
1
),
730
734
(
1998
).
24.
M.
Muthukumar
, “
Polymer translocation through a hole
,”
J. Chem. Phys.
111
(
22
),
10371
10374
(
1999
).
25.
W.
Sung
and
P. J.
Park
, “
Polymer translocation through a pore in a membrane
,”
Phys. Rev. Lett.
77
(
4
),
783
786
(
1996
).
26.
M.
Muthukumar
, “
Polymer escape through a nanopore
,”
J. Chem. Phys.
118
(
11
),
5174
5184
(
2003
).
27.
K.
Chen
and
M.
Muthukumar
, “
Entropic barrier of topologically immobilized DNA in hydrogels
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
28
),
e2106380118
(
2021
).
28.
R.
Kumar
and
M.
Muthukumar
, “
Origin of translocation barriers for polyelectrolyte chains
,”
J. Chem. Phys.
131
(
19
),
194903
(
2009
).
29.
B.
Cressiot
,
A.
Oukhaled
,
G.
Patriarche
,
M.
Pastoriza-Gallego
,
J.-M.
Betton
,
L.
Auvray
,
M.
Muthukumar
,
L.
Bacri
, and
J.
Pelta
, “
Protein transport through a narrow solid-state nanopore at high voltage: Experiments and theory
,”
ACS Nano
6
(
7
),
6236
6243
(
2012
).
30.
H.
Risken
,
The Fokker-Planck Equation: Methods of Solution and Applications
,
Springer Series in Synergetics
(
Springer, Berlin, Heidelberg
,
2011
), pp.
63
95
.
31.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
2005
).
32.
S. F.
Edwards
, “
The statistical mechanics of polymers with excluded volume
,”
Proc. Phys. Soc.
85
(
4
),
613
624
(
1965
).
33.
H. D.
Ceniceros
and
G. H.
Fredrickson
, “
Numerical solution of polymer self-consistent field theory
,”
Multiscale Model. Simul.
2
(
3
),
452
474
(
2004
).
34.
M. W.
Matsen
, “
Thin films of block copolymer
,”
J. Chem. Phys.
106
(
18
),
7781
7791
(
1997
).
35.
M. F.
Thees
,
J. A.
McGuire
, and
C. B.
Roth
, “
Review and reproducibility of forming adsorbed layers from solvent washing of melt annealed films
,”
Soft Matter
16
(
23
),
5366
5387
(
2020
).
36.
M. J.
Burroughs
,
S.
Napolitano
,
D.
Cangialosi
, and
R. D.
Priestley
, “
Direct measurement of glass transition temperature in exposed and buried adsorbed polymer nanolayers
,”
Macromolecules
49
(
12
),
4647
4655
(
2016
).

Supplementary Material

You do not currently have access to this content.