A scaling law for the osmotic pressure of quasi-two-dimensional polymer melts as a function of concentration is obtained, which shows fractal characteristics. Structural properties such as the chains’ contour length and their inner-monomer pair distribution function display fractal scaling properties as well. These predictions are confirmed with mesoscale numerical simulations. The chains are swollen and highly entangled, yet Flory’s exponent is always ν = 1/2. The melt can be considered a fluid of “blobs” whose size becomes renormalized in terms of the contour’s length while the fractal dimension df increases monotonically between 5/4 and 2, as the monomer concentration is increased. The semidilute scaling of the pressure is recovered when df = 1. Our results agree with recent experiments and with numerical reports on quasi-2d melts. This work provides a new paradigm to study and interpret thermodynamic and structural data in low-dimensional polymer melts, namely as fractal macromolecular objects.

1.
J.
Sakamoto
,
J.
van Heijst
,
O.
Lukin
, and
A. D.
Schlüter
,
Angew. Chem., Int. Ed.
48
(
6
),
1030
1069
(
2009
).
2.
J.
Kumaki
,
Polym. J.
48
(
1
),
3
14
(
2016
).
3.
X.
Wang
and
V. J.
Foltz
,
J. Chem. Phys.
121
(
16
),
8158
(
2004
).
4.
W.
Wang
and
A. D.
Schlüter
,
Macromol. Rapid Commun.
40
(
1
),
1800719
(
2019
).
5.
B.
Maier
and
J. O.
Rädler
,
Phys. Rev. Lett.
82
(
9
),
1911
1914
(
1999
).
6.
G.
Witz
,
K.
Rechendorff
,
J.
Adamcik
, and
G.
Dietler
,
Phys. Rev. Lett.
106
(
24
),
248301
(
2011
).
7.
G.
Witz
,
K.
Rechendorff
,
J.
Adamcik
, and
G.
Dietler
,
Phys. Rev. Lett.
101
(
14
),
148103
(
2008
).
8.
I. S.
Chaschin
,
T. E.
Grigorev
,
M. O.
Gallyamov
, and
A. R.
Khokhlov
,
Eur. Polym. J.
48
(
5
),
906
918
(
2012
).
9.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
London
,
1979
).
10.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
New York
,
1953
).
11.
J. C.
Le Guillou
and
J.
Zinn-Justin
,
Phys. Rev. Lett.
39
(
2
),
95
98
(
1977
).
12.
J.
des Cloizeaux
,
J. Phys. France
36
(
4
),
281
291
(
1975
).
13.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Elsevier Academic Press
,
2011
).
14.
R.
Vilanove
,
D.
Poupinet
, and
F.
Rondelez
,
Macromolecules
21
(
9
),
2880
2887
(
1988
).
15.
A.
Gama Goicochea
and
E.
Pérez
,
Macromol. Chem. Phys.
216
(
10
),
1076
1080
(
2015
).
16.
L.
Liu
and
C.
Hyeon
,
J. Phys. Chem. B
126
(
46
),
9695
9704
(
2022
).
17.
N.
Schulmann
,
H.
Meyer
,
T.
Kreer
,
A.
Cavallo
,
A.
Johner
,
J.
Baschnagel
, and
J. P.
Wittmer
,
Polym. Sci., Ser. C
55
(
1
),
181
211
(
2013
).
18.
A. N.
Semenov
and
A.
Johner
,
Eur. Phys. J. E
12
(
3
),
469
480
(
2003
).
19.
H.
Meyer
,
J. P.
Wittmer
,
T.
Kreer
,
A.
Johner
, and
J.
Baschnagel
,
J. Chem. Phys.
132
(
18
),
184904
(
2010
).
20.
H.
Meyer
,
T.
Kreer
,
M.
Aichele
,
A.
Cavallo
,
A.
Johner
,
J.
Baschnagel
, and
J. P.
Wittmer
,
Phys. Rev. E
79
(
5
),
050802
(
2009
).
21.
B.
Duplantier
,
J. Phys. A: Math. Gen.
19
(
16
),
L1009
L1014
(
1986
).
22.

“Equation (3) can also be obtained if one defines a correlation length, ξ, such that the osmotic pressure goes as ΠkBT/ξd, see de Gennes,9 where d = 2 and ξLcc*α. The exponent α is chosen so as to make Π independent of the polymerization degree, N.”

23.
A.
Yethiraj
,
Macromolecules
36
(
15
),
5854
5862
(
2003
).
24.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
(
3
),
155
160
(
1992
).
25.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
(
4
),
191
196
(
1995
).
26.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
(
5
),
3628
3631
(
1986
).
27.
B. J.
Sung
and
A.
Yethiraj
,
J. Chem. Phys.
138
(
23
),
234904
(
2013
).
28.
P.
Polanowski
and
J. K.
Jeszka
,
CMST
26
(
4
),
137
142
(
2020
).
29.
J.
Kim
,
J. M.
Kim
, and
C.
Baig
,
Polymer
213
,
123308
(
2021
).
30.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H. Freeman
,
New York
,
1982
).
31.
M. O.
Gallyamov
,
B.
Tartsch
,
I. I.
Potemkin
,
H. G.
Börner
,
K.
Matyjaszewski
,
A. R.
Khokhlov
, and
M.
Möller
,
Eur. Phys. J. E
29
(
1
),
73
85
(
2009
).
32.
L.
Liu
and
C.
Hyeon
,
Macromolecules
56
(
17
),
6870
6879
(
2023
).
33.
A.
Cavallo
,
M.
Müller
, and
K.
Binder
,
J. Phys. Chem. B
109
(
14
),
6544
6552
(
2005
).
34.
Z.
Li
,
M.
Tang
,
S.
Liang
,
M.
Zhang
,
G. M.
Biesold
,
Y.
He
,
S.-M.
Hao
,
W.
Choi
,
Y.
Liu
,
J.
Peng
, and
Z.
Lin
,
Prog. Polym. Sci.
116
,
101387
(
2021
).
35.
N. D.
Ogbonna
,
M.
Dearman
,
C.-T.
Cho
,
B.
Bharti
,
A. J.
Peters
, and
J.
Lawrence
,
JACS Au
2
(
4
),
898
905
(
2022
).
36.
J. M.
Ren
,
T. G.
McKenzie
,
Q.
Fu
,
E. H. H.
Wong
,
J.
Xu
,
Z.
An
,
S.
Shanmugam
,
T. P.
Davis
,
C.
Boyer
, and
G. G.
Qiao
,
Chem. Rev.
116
(
12
),
6743
6836
(
2016
).
37.
Y.
Roiter
and
S.
Minko
,
J. Am. Chem. Soc.
127
(
45
),
15688
15689
(
2005
).
38.
A. V.
Dobrynin
,
R. H.
Colby
, and
M.
Rubinstein
,
Macromolecules
28
(
6
),
1859
1871
(
1995
).
39.
K. A.
Terrón-Mejía
,
R.
López-Rendón
, and
A.
Gama Goicochea
,
Phys. Chem. Chem. Phys.
17
(
39
),
26403
26416
(
2015
).
40.
J. D.
Hernández Velázquez
,
G.
Sánchez-Balderas
,
A.
Gama Goicochea
, and
E.
Pérez
,
Phys. Chem. Chem. Phys.
25
(
15
),
10325
10334
(
2023
).
41.
A.
Galuschko
,
M.
Lang
,
T.
Kreer
, and
J.-U.
Sommer
,
Soft Mater.
12
(
sup1
),
S49
S55
(
2014
).

Supplementary Material

You do not currently have access to this content.