We introduce an allostery-mimetic building block model for the self-assembly of 3D structures. We represent the building blocks as patchy particles, where each binding site (patch) can be irreversibly activated or deactivated by binding of the particle’s other controlling patches to another particle. We show that these allostery-mimetic systems can be designed to increase yields of target structures by disallowing misassembled states and can further decrease the smallest number of distinct species needed to assemble a target structure. Next, we show applications to design a programmable nanoparticle swarm for multifarious assembly: a system of particles that stores multiple possible target structures and a particular structure is recalled by presenting an external trigger signal. Finally, we outline a possible pathway for realization of such structures at nanoscale using DNA nanotechnology devices.

1.
R. J.
Macfarlane
,
M. R.
Jones
,
A. J.
Senesi
,
K. L.
Young
,
B.
Lee
,
J.
Wu
, and
C. A.
Mirkin
, “
Establishing the design rules for DNA-mediated programmable colloidal crystallization
,”
Angew. Chem.
122
(
27
),
4693
4696
(
2010
).
2.
Z.
Li
,
S.
Wang
,
U.
Nattermann
,
A. K.
Bera
,
A. J.
Borst
,
M. Y.
Yaman
,
M. J.
Bick
,
E. C.
Yang
,
W.
Sheffler
,
B.
Lee
et al, “
Accurate computational design of three-dimensional protein crystals
,”
Nat. Mater.
22
,
1556
1563
(
2023
).
3.
N. C.
Seeman
and
H. F.
Sleiman
, “
DNA nanotechnology
,”
Nat. Rev. Mater.
3
(
1
),
17068
(
2017
).
4.
P. W. K.
Rothemund
,
N.
Papadakis
, and
E.
Winfree
, “
Algorithmic self-assembly of DNA Sierpinski triangles
,”
PLoS Biol.
2
(
12
),
e424
(
2004
).
5.
P. W.
Rothemund
, “
Folding DNA to create nanoscale shapes and patterns
,”
Nature
440
(
7082
),
297
302
(
2006
).
6.
Y.
Tian
,
Y.
Zhang
,
T.
Wang
,
H. L.
Xin
,
H.
Li
, and
O.
Gang
, “
Lattice engineering through nanoparticle–DNA frameworks
,”
Nat. Mater.
15
(
6
),
654
661
(
2016
).
7.
G.
Tikhomirov
,
P.
Petersen
, and
L.
Qian
, “
Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns
,”
Nature
552
(
7683
),
67
71
(
2017
).
8.
C. M.
Wintersinger
,
D.
Minev
,
A.
Ershova
,
H. M.
Sasaki
,
G.
Gowri
,
J. F.
Berengut
,
F. E.
Corea-Dilbert
,
P.
Yin
, and
W. M.
Shih
, “
Multi-micron crisscross structures grown from DNA-origami slats
,”
Nat. Nanotechnol.
18
(
3
),
281
289
(
2023
).
9.
C.
Sigl
,
E. M.
Willner
,
W.
Engelen
,
J. A.
Kretzmann
,
K.
Sachenbacher
,
A.
Liedl
,
F.
Kolbe
,
F.
Wilsch
,
S. A.
Aghvami
,
U.
Protzer
et al, “
Programmable icosahedral shell system for virus trapping
,”
Nat. Mater.
20
(
9
),
1281
1289
(
2021
).
10.
J. B.
Bale
,
S.
Gonen
,
Y.
Liu
,
W.
Sheffler
,
D.
Ellis
,
C.
Thomas
,
D.
Cascio
,
T. O.
Yeates
,
T.
Gonen
,
N. P.
King
, and
D.
Baker
, “
Accurate design of megadalton-scale two-component icosahedral protein complexes
,”
Science
353
(
6297
),
389
394
(
2016
).
11.
J. F.
Berengut
,
C. K.
Wong
,
J. C.
Berengut
,
J. P.
Doye
,
T. E.
Ouldridge
, and
L. K.
Lee
, “
Self-limiting polymerization of DNA origami subunits with strain accumulation
,”
ACS Nano
14
(
12
),
17428
17441
(
2020
).
12.
Y.
Ke
,
L. L.
Ong
,
W. M.
Shih
, and
P.
Yin
, “
Three-dimensional structures self-assembled from DNA bricks
,”
Science
338
(
6111
),
1177
1183
(
2012
).
13.
S.
Whitelam
and
I.
Tamblyn
, “
Learning to grow: Control of material self-assembly using evolutionary reinforcement learning
,”
Phys. Rev. E
101
(
5
),
052604
(
2020
).
14.
A.
Bupathy
,
D.
Frenkel
, and
S.
Sastry
, “
Temperature protocols to guide selective self-assembly of competing structures
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
8
),
e2119315119
(
2022
).
15.
S.
Osat
and
R.
Golestanian
, “
Non-reciprocal multifarious self-organization
,”
Nat. Nanotechnol.
18
(
1
),
79
85
(
2023
).
16.
A.
Murugan
,
Z.
Zeravcic
,
M. P.
Brenner
, and
S.
Leibler
, “
Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
1
),
54
59
(
2015
).
17.
P.
Sartori
and
S.
Leibler
, “
Lessons from equilibrium statistical physics regarding the assembly of protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
1
),
114
120
(
2020
).
18.
C. G.
Evans
,
J.
O’Brien
,
E.
Winfree
, and
A.
Murugan
, “
Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly
,”
Nature,
625
(
7995
),
500
507
(
2024
).
19.
J.
Bohlin
,
A. J.
Turberfield
,
A. A.
Louis
, and
P.
Šulc
, “
Designing the self-assembly of arbitrary shapes using minimal complexity building blocks
,”
ACS Nano
17
(
6
),
5387
5398
(
2023
).
20.
J.
Russo
,
F.
Romano
,
L.
Kroc
,
F.
Sciortino
,
L.
Rovigatti
, and
P.
Šulc
, “
SAT-assembly: A new approach for designing self-assembling systems
,”
J. Phys.: Condens. Matter
34
(
35
),
354002
(
2022
).
21.
F.
Romano
,
J.
Russo
,
L.
Kroc
, and
P.
Šulc
, “
Designing patchy interactions to self-assemble arbitrary structures
,”
Phys. Rev. Lett.
125
(
11
),
118003
(
2020
).
22.
N.
Eén
and
N.
Sörensson
, “
An extensible SAT-solver
,” in
International Conference on Theory and Applications of Satisfiability Testing
(
Springer
,
2003
), pp.
502
518
.
23.
L.
Rovigatti
,
J.
Russo
,
F.
Romano
,
M.
Matthies
,
L.
Kroc
, and
P.
Šulc
, “
A simple solution to the problem of self-assembling cubic diamond crystals
,”
Nanoscale
14
(
38
),
14268
14275
(
2022
).
24.
H.
Liu
,
M.
Matthies
,
J.
Russo
,
L.
Rovigatti
,
R. P.
Narayanan
,
T.
Diep
,
D.
McKeen
,
O.
Gang
,
N.
Stephanopoulos
,
F.
Sciortino
et al, “
Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments
,” arXiv:2310.10995 (
2023
).
25.
D. E.
Pinto
,
P.
Šulc
,
F.
Sciortino
, and
J.
Russo
, “
Design strategies for the self-assembly of polyhedral shells
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
16
),
e2219458120
(
2023
).
26.
J. E.
Padilla
,
R.
Sha
,
M.
Kristiansen
,
J.
Chen
,
N.
Jonoska
, and
N. C.
Seeman
, “
A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures
,”
Angew. Chem.
127
(
20
),
6037
6040
(
2015
).
27.
Z.
Derakhshandeh
,
S.
Dolev
,
R.
Gmyr
,
A. W.
Richa
,
C.
Scheideler
, and
T.
Strothmann
, “
Amoebot-a new model for programmable matter
,” in
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(
Association for Computing Machinery, New York, NY
,
2014
), pp.
220
222
.
28.
J.
Hendricks
,
J. E.
Padilla
,
M. J.
Patitz
, and
T. A.
Rogers
, “
Signal transmission across tile assemblies: 3D static tiles simulate active self-assembly by 2D signal-passing tiles
,” in
DNA Computing and Molecular Programming: 19th International Conference, DNA 19, Tempe, AZ, USA, September 22–27, 2013
(
Springer
,
2013
), pp.
90
104
.
29.
J. E.
Padilla
,
M. J.
Patitz
,
R. T.
Schweller
,
N. C.
Seeman
,
S. M.
Summers
, and
X.
Zhong
, “
Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes
,”
Int. J. Found. Comput. Sci.
25
(
04
),
459
488
(
2014
).
30.
A. A.
Cantu
,
A.
Luchsinger
,
R.
Schweller
, and
T.
Wylie
, “
Signal passing self-assembly simulates tile automata
,” in
31st International Symposium on Algorithms and Computation (ISAAC 2020)
(Leibniz International Proceedings in Informatics, 2020), Vol. 181, pp. 53:1-53:17.
31.
P. W.
Rothemund
, “
Design of DNA origami
,” in
ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design
(
IEEE
,
2005
), pp.
471
478
.
32.
F. C.
Simmel
,
B.
Yurke
, and
H. R.
Singh
, “
Principles and applications of nucleic acid strand displacement reactions
,”
Chem. Rev.
119
(
10
),
6326
6369
(
2019
).
33.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
, “
Reversible gels of patchy particles: Role of the valence
,”
J. Chem. Phys.
131
(
1
),
014504
(
2009
).
34.
E.
Poppleton
,
M.
Matthies
,
D.
Mandal
,
F.
Romano
,
P.
Šulc
, and
L.
Rovigatti
, “
oxDNA: Coarse-grained simulations of nucleic acids made simple
,”
J. Open Source Softw.
8
(
81
),
4693
(
2023
).
35.
The IGraph Team
, Python-igraph.
36.
R. M.
Dirks
and
N. A.
Pierce
, “
Triggered amplification by hybridization chain reaction
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
43
),
15275
15278
(
2004
).
37.
G.
Seelig
,
D.
Soloveichik
,
D. Y.
Zhang
, and
E.
Winfree
, “
Enzyme-free nucleic acid logic circuits
,”
Science
314
(
5805
),
1585
1588
(
2006
).
38.
N.
Dalchau
,
H.
Chandran
,
N.
Gopalkrishnan
,
A.
Phillips
, and
J.
Reif
, “
Probabilistic analysis of localized DNA hybridization circuits
,”
ACS Synth. Biol.
4
(
8
),
898
913
(
2015
).
39.
A. J.
Thubagere
,
W.
Li
,
R. F.
Johnson
,
Z.
Chen
,
S.
Doroudi
,
Y. L.
Lee
,
G.
Izatt
,
S.
Wittman
,
N.
Srinivas
,
D.
Woods
,
E.
Winfree
, and
L.
Qian
, “
A cargo-sorting DNA robot
,”
Science
357
(
6356
),
eaan6558
(
2017
).
40.
G.
Chatterjee
,
N.
Dalchau
,
R. A.
Muscat
,
A.
Phillips
, and
G.
Seelig
, “
A spatially localized architecture for fast and modular DNA computing
,”
Nat. Nanotechnol.
12
(
9
),
920
927
(
2017
).
41.
E. S.
Andersen
,
M.
Dong
,
M. M.
Nielsen
,
K.
Jahn
,
R.
Subramani
,
W.
Mamdouh
,
M. M.
Golas
,
B.
Sander
,
H.
Stark
,
C. L. P.
Oliveira
,
J. S.
Pedersen
,
V.
Birkedal
,
F.
Besenbacher
,
K. V.
Gothelf
, and
J.
Kjems
, “
Self-assembly of a nanoscale DNA box with a controllable lid
,”
Nature
459
(
7243
),
73
76
(
2009
).
42.
T.
Gerling
,
K. F.
Wagenbauer
,
A. M.
Neuner
, and
H.
Dietz
, “
Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components
,”
Science
347
(
6229
),
1446
1452
(
2015
).
43.
F.
Zhang
,
S.
Jiang
,
S.
Wu
,
Y.
Li
,
C.
Mao
,
Y.
Liu
, and
H.
Yan
, “
Complex wireframe DNA origami nanostructures with multi-arm junction vertices
,”
Nat. Nanotechnol.
10
(
9
),
779
784
(
2015
).

Supplementary Material

You do not currently have access to this content.