Graphene oxide (GO) is a two-dimensional, mechanically strong, and chemically tunable material for separations. Elucidating GO–ion–water interactions at the molecular scale is highly important for predictive understanding of separation systems. However, direct observations of the nanometer region by GO surfaces under operando conditions are not trivial. Therefore, thin films of GO at the air/water interface can be used as model systems. With this approach, we study the effects of alkali metal ions on water organization near graphene oxide films at the air/water interface using vibrational sum frequency generation (SFG) spectroscopy. We also use an arachidic acid Langmuir monolayer as a benchmark for a pure carboxylic acid surface. Theoretical modeling of the concentration-dependent sum frequency signal from graphene oxide and arachidic acid surfaces reveals that the adsorption of monovalent ions is mainly controlled by the carboxylic acid groups on graphene oxide. An in-depth analysis of sum frequency spectra reveals at least three distinct water populations with different hydrogen bonding strengths. The origin of each population can be identified from concentration dependent variations of their SFG signal. Interestingly, an interfacial water structure seemed mostly insensitive to the character of the alkali cation, in contrast to similar studies conducted at the silica/water interface. However, we observed an ion-specific effect with lithium, whose strong hydration prevented direct interactions with the graphene oxide film.

1.
J.
Abraham
,
K. S.
Vasu
,
C. D.
Williams
,
K.
Gopinadhan
,
Y.
Su
,
C. T.
Cherian
,
J.
Dix
,
E.
Prestat
,
S. J.
Haigh
,
I. V.
Grigorieva
et al, “
Tunable sieving of ions using graphene oxide membranes
,”
Nat. Nanotechnol.
12
,
546
550
(
2017
).
2.
P.
Sun
,
M.
Zhu
,
K.
Wang
,
M.
Zhong
,
J.
Wei
,
D.
Wu
,
Z.
Xu
, and
H.
Zhu
, “
Selective ion penetration of graphene oxide membranes
,”
ACS Nano
7
,
428
437
(
2013
).
3.
C.
Cheng
,
S. A.
Iyengar
, and
R.
Karnik
, “
Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes
,”
Nat. Nanotechnol.
16
,
989
995
(
2021
).
4.
J.
Hao
,
Y.
Ning
,
Y.
Hou
,
S.
Ma
,
C.
Lin
,
J.
Zhao
,
C.
Li
, and
X.
Sui
, “
Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion
,”
J. Colloid Interface Sci.
630
,
795
803
(
2023
).
5.
M.
Majdoub
,
A.
Amedlous
,
Z.
Anfar
,
A.
Jada
, and
N.
El Alem
, “
Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water
,”
J. Colloid Interface Sci.
589
,
511
524
(
2021
).
6.
J.
Kim
,
S. E.
Lee
,
S.
Seo
,
J. Y.
Woo
, and
C. S.
Han
, “
Near-complete blocking of multivalent anions in graphene oxide membranes with tunable interlayer spacing from 3.7 to 8.0 angstrom
,”
J. Membr. Sci.
592
,
117394
(
2019
).
7.
S. E.
Lee
,
K. Y.
Chun
,
J.
Kim
,
S.
Jo
, and
C. S.
Han
, “
Abnormally selective proton transport through angstrom channels of highly reduced graphene oxide
,”
J. Membr. Sci.
659
,
120801
(
2022
).
8.
S. P.
Koenig
,
L.
Wang
,
J.
Pellegrino
, and
J. S.
Bunch
, “
Selective molecular sieving through porous graphene
,”
Nat. Nanotechnol.
7
,
728
732
(
2012
).
9.
H. W.
Kim
,
H. W.
Yoon
,
S.-M.
Yoon
,
B. M.
Yoo
,
B. K.
Ahn
,
Y. H.
Cho
,
H. J.
Shin
,
H.
Yang
,
U.
Paik
,
S.
Kwon
et al, “
Selective gas transport through few-layered graphene and graphene oxide membranes
,”
Science
342
,
91
95
(
2013
).
10.
J.
Shen
,
G.
Liu
,
K.
Huang
,
Z.
Chu
,
W.
Jin
, and
N.
Xu
, “
Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving
,”
ACS Nano
10
,
3398
3409
(
2016
).
11.
S. E.
Lee
,
J.
Jang
,
J.
Kim
,
J. Y.
Woo
,
S.
Seo
,
S.
Jo
,
J.-W.
Kim
,
E.-S.
Jeon
,
Y.
Jung
, and
C.-S.
Han
, “
Tunable sieving of small gas molecules using horizontal graphene oxide membrane
,”
J. Membr. Sci.
610
,
118178
(
2020
).
12.
P. R.
Kidambi
,
P.
Chaturvedi
, and
N. K.
Moehring
, “
Subatomic species transport through atomically thin membranes: Present and future applications
,”
Science
374
,
eabd7687
(
2021
).
13.
S.
Liu
,
K.
Hu
,
M.
Cerruti
, and
F.
Barthelat
, “
Ultra-stiff graphene oxide paper prepared by directed-flow vacuum filtration
,”
Carbon
158
,
426
434
(
2020
).
14.
O. C.
Compton
and
S. T.
Nguyen
, “
Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials
,”
Small
6
,
711
723
(
2010
).
15.
A. A.
Eliseev
,
K. E.
Gurianov
,
A. A.
Poyarkov
,
M. A.
Komkova
,
I. S.
Sadilov
,
A. P.
Chumakov
, and
D. I.
Petukhov
, “
Tunable sieving of ions using graphene oxide: Swelling peculiarities in free-standing and confined states
,”
Nano Lett.
23
,
9719
9725
(
2023
).
16.
H.
Zhang
,
A.
Li
,
K.
Li
,
Z.
Wang
,
X.
Xu
,
Y.
Wang
,
M. V.
Sheridan
,
H.-S.
Hu
,
C.
Xu
,
E. V.
Alekseev
,
Z.
Zhang
,
P.
Yan
,
K.
Cao
,
Z.
Chai
,
T. E.
Albrecht-Schönzart
, and
S.
Wang
, “
Ultrafiltration separation of Am(VI)-Polyoxometalate from lanthanides
,”
Nature
616
,
482
487
(
2023
).
17.
Q.
Nan
,
P.
Li
, and
B.
Cao
, “
Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination
,”
Appl. Surf. Sci.
387
,
521
528
(
2016
).
18.
E.
Price
,
T.
Bansala
,
T.
Achee
,
W.
Sun
, and
M.
Green
, “
Tunable dispersibility and wettability of graphene oxide through one-pot functionalization and reduction
,”
J. Colloid Interface Sci.
552
,
771
780
(
2019
).
19.
W.
Sung
,
Z.
Avazbaeva
, and
D.
Kim
, “
Salt promotes protonation of amine groups at air/water interface
,”
J. Phys. Chem. Lett.
8
,
3601
3606
(
2017
).
20.
E.
Tyrode
and
R.
Corkery
, “
Charging of carboxylic acid monolayers with monovalent ions at low ionic strengths: Molecular insight revealed by vibrational sum frequency spectroscopy
,”
J. Phys. Chem. C
122
,
28775
28786
(
2018
).
21.
A.
Sthoer
,
E. M.
Adams
,
S.
Sengupta
,
R. W.
Corkery
,
H. C.
Allen
, and
E. C.
Tyrode
, “
La3+ and Y3+ interactions with the carboxylic acid moiety at the liquid/vapor interface: Identification of binding complexes, charge reversal, and detection limits
,”
J. Colloid Interface Sci.
608
,
2169
2180
(
2022
).
22.
L.
Zhao
,
S.-T.
Yang
,
S.
Feng
,
Q.
Ma
,
X.
Peng
, and
D.
Wu
, “
Preparation and application of carboxylated graphene oxide sponge in dye removal
,”
Int. J. Environ. Res. Public Health
14
,
1301
(
2017
).
23.
F.
Ma
,
J.
Nian
,
C.
Bi
,
M.
Yang
,
C.
Zhang
,
L.
Liu
,
H.
Dong
,
M.
Zhu
, and
B.
Dong
, “
Preparation of carboxylated graphene oxide for enhanced adsorption of U(VI)
,”
J. Solid State Chem.
277
,
9
16
(
2019
).
24.
K.
Patel
,
R.
Devi
,
P. K.
Dewangan
,
A. K.
Sutar
,
A. K.
Sutar
, and
T.
Maharana
, “
A novel method for the removal of uranium by using carboxyl functionalized graphene oxide
,”
IOP Conf. Ser.: Mater. Sci. Eng.
798
,
012029
(
2020
).
25.
Y.
Xie
,
E. M.
Helvenston
,
L. C.
Shuller-Nickles
, and
B. A.
Powell
, “
Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide
,”
Environ. Sci. Technol.
50
,
1821
1827
(
2016
).
26.
B.
Hu
,
Q.
Hu
,
X.
Li
,
H.
Pan
,
X.
Tang
,
C.
Chen
, and
C.
Huang
, “
Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide
,”
J. Mol. Liq.
229
,
6
14
(
2017
).
27.
I.
Ali
,
E.
Zakharchenko
,
G.
Myasoedova
,
N.
Molochnikova
,
A.
Rodionova
,
V.
Baulin
,
A.
Burakov
,
I.
Burakova
,
A.
Babkin
,
E.
Neskoromnaya
et al, “
Preparation and characterization of oxidized graphene for actinides and rare earth elements removal in nitric acid solutions from nuclear wastes
,”
J. Mol. Liq.
335
,
116260
(
2021
).
28.
A. Y.
Romanchuk
,
A. S.
Slesarev
,
S. N.
Kalmykov
,
D. V.
Kosynkin
, and
J. M.
Tour
, “
Graphene oxide for effective radionuclide removal
,”
Phys. Chem. Chem. Phys.
15
,
2321
2327
(
2013
).
29.
W.
Yang
and
M.
Cao
, “
Study on the difference in adsorption performance of graphene oxide and carboxylated graphene oxide for Cu(II), Pb(II) respectively and mechanism analysis
,”
Diamond Relat. Mater.
129
,
109332
(
2022
).
30.
A. J.
Carr
,
S. E.
Lee
, and
A.
Uysal
, “
Ion and water adsorption to graphene and graphene oxide surfaces
,”
Nanoscale
15
,
14319
14337
(
2023
).
31.
A. J.
Carr
,
R. R.
Kumal
,
W.
Bu
, and
A.
Uysal
, “
Effects of ion adsorption on graphene oxide films and interfacial water structure: A molecular-scale description
,”
Carbon
195
,
131
140
(
2022
).
32.
R. R.
Kumal
,
A. J.
Carr
, and
A.
Uysal
, “
A simple method for high-quality ultra-thin graphene oxide films facilitates nanoscale investigations of ion and water adsorption
,” chemRxiv:2022-1csxr (
2022
).
33.
A. J.
Carr
,
S. E.
Lee
,
R. R.
Kumal
,
W.
Bu
, and
A.
Uysal
, “
Convenient confinement: Interplay of solution conditions and graphene oxide film structure on rare earth separations
,”
ACS Appl. Mater. Interfaces
14
,
57133
57143
(
2022
).
34.
N.
Bonatout
,
F.
Muller
,
P.
Fontaine
,
I.
Gascon
,
O.
Konovalov
, and
M.
Goldmann
, “
How exfoliated graphene oxide nanosheets organize at the water interface: Evidence for a spontaneous bilayer self-assembly
,”
Nanoscale
9
,
12543
12548
(
2017
).
35.
D.
López-Díaz
,
M. D.
Merchán
,
M. M.
Velázquez
, and
A.
Maestro
, “
Understanding the role of oxidative debris on the structure of graphene oxide films at the air–water interface: A neutron reflectivity study
,”
ACS Appl. Mater. Interfaces
12
,
25453
25463
(
2020
).
36.
Y.
Hong
,
J.
He
,
C.
Zhang
, and
X.
Wang
, “
Probing the structure of water at the interface with graphene oxide using sum frequency generation vibrational spectroscopy
,”
J. Phys. Chem. C
126
,
1471
1480
(
2022
).
37.
R.
David
,
A.
Tuladhar
,
L.
Zhang
,
C.
Arges
, and
R.
Kumar
, “
Effect of oxidation level on the interfacial water at the graphene oxide–water interface: From spectroscopic signatures to hydrogen-bonding environment
,”
J. Phys. Chem. B
124
,
8167
8178
(
2020
).
38.
A.
Uysal
, “
Aqueous interfaces in chemical separations
,”
Langmuir
39
,
17570
(
2023
).
39.
X. X.
Wang
,
Z. S.
Chen
, and
X. K.
Wang
, “
Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions
,”
Sci. China-Chem.
58
,
1766
1773
(
2015
).
40.
S. S.
Lee
,
M.
Schmidt
,
N.
Laanait
,
N. C.
Sturchio
, and
P.
Fenter
, “
Investigation of structure, adsorption free energy, and overcharging behavior of trivalent yttrium adsorbed at the muscovite (001)–water interface
,”
J. Phys. Chem. C
117
,
23738
23749
(
2013
).
41.
S.
Nayak
,
R. R.
Kumal
,
S. E.
Lee
, and
A.
Uysal
, “
Elucidating trivalent ion adsorption at floating carboxylic acid monolayers: Charge reversal or water reorganization?
,”
J. Phys. Chem. Lett.
14
,
3685
3690
(
2023
).
42.
J.
Hunger
,
J.
Schaefer
,
P.
Ober
,
T.
Seki
,
Y. K.
Wang
,
L.
Pradel
,
Y.
Nagata
,
M.
Bonn
,
D. J.
Bonthuis
, and
E. H. G.
Backus
, “
Nature of cations critically affects water at the negatively charged silica interface
,”
J. Am. Chem. Soc.
144
,
19726
19738
(
2022
).
43.
E.
Kim
,
D.
Kim
,
K.
Kwak
,
Y.
Nagata
,
M.
Bonn
, and
M.
Cho
, “
Wettability of graphene, water contact angle, and interfacial water structure
,”
Chem
8
,
1187
1200
(
2022
).
44.
Y.
Wang
,
T.
Seki
,
X.
Liu
,
X.
Yu
,
C.-C.
Yu
,
K. F.
Domke
,
J.
Hunger
,
M. T. M.
Koper
,
Y.
Chen
,
Y.
Nagata
, and
M.
Bonn
, “
Direct probe of electrochemical pseudocapacitive pH jump at a graphene electrode**
,”
Angew. Chem., Int. Ed.
62
,
e202216604
(
2023
).
45.
S.
Sam
,
S.
Krem
,
J.
Lee
, and
D.
Kim
, “
Recovery of fatty acid monolayers by salts investigated by sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
126
,
643
649
(
2022
).
46.
A.
Sthoer
,
J.
Hladilkova
,
M.
Lund
, and
E.
Tyrode
, “
Molecular insight into carboxylic acid-alkali metal cations interactions: Reversed affinities and ion-pair formation revealed by non-linear optics and simulations
,”
Phys. Chem. Chem. Phys.
21
,
11329
11344
(
2019
).
47.
A.
Montenegro
,
C.
Dutta
,
M.
Mammetkuliev
,
H.
Shi
,
B.
Hou
,
D.
Bhattacharyya
,
B.
Zhao
,
S. B.
Cronin
, and
A. V.
Benderskii
, “
Asymmetric response of interfacial water to applied electric fields
,”
Nature
594
,
62
65
(
2021
).
48.
Y.
Xu
,
Y.-B.
Ma
,
F.
Gu
,
S.-S.
Yang
, and
C.-S.
Tian
, “
Structure evolution at the gate-tunable suspended graphene–water interface
,”
Nature
621
,
506
510
(
2023
).
49.
A. J.
Carr
,
S. E.
Lee
, and
A.
Uysal
, “
Heavy versus light lanthanide selectivity for graphene oxide films is concentration-dependent
,”
J. Phys. Chem. C
127
,
14363
14373
(
2023
).
50.
G.
Gonella
,
C.
Lütgebaucks
,
A. G. F.
de Beer
, and
S.
Roke
, “
Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference
,”
J. Phys. Chem. C
120
,
9165
9173
(
2016
).
51.
R. R.
Kumal
,
S.
Nayak
,
W.
Bu
, and
A.
Uysal
, “
Chemical potential driven reorganization of anions between stern and diffuse layers at the air/water interface
,”
J. Phys. Chem. C
126
,
1140
1151
(
2022
).
52.
W.
Rock
,
B.
Qiao
,
T.
Zhou
,
A. E.
Clark
, and
A.
Uysal
, “
Heavy anionic complex creates a unique water structure at a soft charged interface
,”
J. Phys. Chem. C
122
,
29228
29236
(
2018
).
53.
R.
David
and
R.
Kumar
, “
Reactive events at the graphene oxide–water interface
,”
Chem. Commun.
57
,
11697
11700
(
2021
).
54.
S.
Nayak
,
R. R.
Kumal
,
Z.
Liu
,
B.
Qiao
,
A. E.
Clark
, and
A.
Uysal
, “
Origins of clustering of metalate–extractant complexes in liquid–liquid extraction
,”
ACS Appl. Mater. Interfaces
13
,
24194
24206
(
2021
).
55.
K.
Lovering
,
S.
Nayak
,
W.
Bu
, and
A.
Uysal
, “
The role of specific ion effects in ion transport: The case of nitrate and thiocyanate
,”
J. Phys. Chem. C
124
,
573
581
(
2019
).
56.
S. K.
Reddy
,
R.
Thiraux
,
B. A.
Wellen Rudd
,
L.
Lin
,
T.
Adel
,
T.
Joutsuka
,
F. M.
Geiger
,
H. C.
Allen
,
A.
Morita
, and
F.
Paesani
, “
Bulk contributions modulate the sum-frequency generation spectra of water on model sea-spray aerosols
,”
Chem
4
,
1629
1644
(
2018
).
57.
A. V.
Muthachikavil
,
B.
Peng
,
G. M.
Kontogeorgis
, and
X.
Liang
, “
Distinguishing weak and strong hydrogen bonds in liquid water—A potential of mean force-based approach
,”
J. Phys. Chem. B
125
,
7187
7198
(
2021
).
58.
V. M.
Kaganer
,
H.
Mohwald
, and
P.
Dutta
, “
Structure and phase transitions in Langmuir monolayers
,”
Rev. Mod. Phys.
71
,
779
819
(
1999
).
59.
W.
Wang
,
R. Y.
Park
,
D. H.
Meyer
,
A.
Travesset
, and
D.
Vaknin
, “
Ionic specificity in pH regulated charged interfaces: Fe3+ versus La3+
,”
Langmuir
27
,
11917
11924
(
2011
).
60.
M.
Sovago
,
R. K.
Campen
,
G. W. H.
Wurpel
,
M.
Muller
,
H. J.
Bakker
, and
M.
Bonn
, “
Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling
,”
Phys. Rev. Lett.
100
,
173901
(
2008
).
61.
E.
Leontidis
, “
Investigations of the hofmeister series and other specific ion effects using lipid model systems
,”
Adv. Colloid Interface Sci.
243
,
8
22
(
2017
).
62.
Y.
Marcus
, “
A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes
,”
Biophys. Chem.
51
,
111
127
(
1994
).
63.
G. S.
Shi
,
Y. R.
Dang
,
T. T.
Pan
,
X.
Liu
,
H.
Liu
,
S. X.
Li
,
L. J.
Zhang
,
H. W.
Zhao
,
S. P.
Li
,
J. G.
Han
,
R. Z.
Tai
,
Y. M.
Zhu
,
J. C.
Li
,
Q.
Ji
,
R. A.
Mole
,
D. H.
Yu
, and
H. P.
Fang
, “
Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations
,”
Phys. Rev. Lett.
117
,
238102
(
2016
).
64.
C. H.
Chuang
and
Y. T.
Chen
, “
Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: Vibrational assignment and structural determination
,”
J. Raman Spectrosc.
40
,
150
156
(
2009
).
65.
H.
Yorita
,
K.
Otomo
,
H.
Hiramatsu
,
A.
Toyama
,
T.
Miura
, and
H.
Takeuchi
, “
Evidence for the Cation−π interaction between Cu2+ and tryptophan
,”
J. Am. Chem. Soc.
130
,
15266
(
2008
).
66.
L.
Chen
,
G.
Shi
,
J.
Shen
,
B.
Peng
,
B.
Zhang
,
Y.
Wang
,
F.
Bian
,
J.
Wang
,
D.
Li
,
Z.
Qian
et al, “
Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
,”
Nature
550
,
380
383
(
2017
).
67.
X. M.
Xia
,
F.
Zhou
,
J.
Xu
,
Z. T.
Wang
,
J.
Lan
,
Y.
Fan
,
Z. K.
Wang
,
W.
Liu
,
J. L.
Chen
,
S. S.
Feng
,
Y. S.
Tu
,
Y. Z.
Yang
,
L.
Chen
, and
H. P.
Fang
, “
Unexpectedly efficient ion desorption of graphene-based materials
,”
Nat. Commun.
13
,
7247
(
2022
).
68.
D. A.
Dougherty
, “
Cation-Π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp
,”
Science
271
,
163
168
(
1996
).
69.
S.-L.
Zhang
,
L.
Liu
,
Y.
Fu
, and
Q.-X.
Guo
, “
Cation–Π interactions of Cu+
,”
J. Mol. Struct.: THEOCHEM
757
,
37
46
(
2005
).
70.
J.
Jiang
,
L.
Mu
,
Y.
Qiang
,
Y.
Yang
,
Z.
Wang
,
R.
Yi
,
Y.
Qiu
,
L.
Chen
,
L.
Yan
, and
H.
Fang
, “
Unexpected selective absorption of lithium in thermally reduced graphene oxide membranes
,”
Chin. Phys. Lett.
38
,
116802
(
2021
).

Supplementary Material

You do not currently have access to this content.