The rapid realization of efficient anti-icing coatings on diverse substrates is of vital value for practical applications. However, current approaches for rapid preparations of anti-icing coatings are still deficient regarding their surface universality and accessibility. Here, we report a simple processing approach to rapidly form icephobic liquid-like polydimethylsiloxane (PDMS) brushes on various substrates, including metals, ceramics, glass, and plastics. A poly(dimethylsiloxane), trimethoxysilane is applied as a reactant under the catalysis of a minimal amount of acid formed by hydrolysis of dichlorodimethylsilane. With such an advantage, this approach is approved to be applicable of coating metal surfaces with less corrosion. The distinctive flexibility of the PDMS chains provides a liquid-like property to the coating showing low contact angle hysteresis and ice adhesion strength. Notably, the ice adhesion strength remains similar across a wide temperature window, from −70 to −10 °C, with a value of 18.4 kPa. The PDMS brushes demonstrate perfect capability for resisting acid and alkali corrosions, ultra-violet degradation, and even tens of icing/deicing cycles. Moreover, the liquid-like coating can also form at supercooling conditions, such as −20 °C, and shows an outstanding anti-icing/deicing performance, which meets the in situ coating reformation requirement under extreme conditions when it is damaged. This instantly forming anti-icing material will benefit from resisting instantaneous ice accretion on surfaces under extremely cold conditions.

1.
W.
Niu
,
G. Y.
Chen
,
H.
Xu
,
X.
Liu
, and
J.
Sun
, “
Highly transparent and self-healable solar thermal anti-/deicing surfaces: When ultrathin MXene multilayers marry a solid slippery self-cleaning coating
,”
Adv. Mater.
34
,
e2108232
(
2022
).
2.
Y.
Zhuo
,
S.
Xiao
,
V.
Håkonsen
,
T.
Li
,
F.
Wang
,
J.
He
, and
Z.
Zhang
, “
Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity
,”
Appl. Mater. Today
19
,
100542
(
2020
).
3.
A.
Dhyani
,
W.
Choi
,
K.
Golovin
, and
A.
Tuteja
, “
Surface design strategies for mitigating ice and snow accretion
,”
Matter
5
,
1423
(
2022
).
4.
A.
Dhyani
,
C.
Pike
,
J. L.
Braid
,
E.
Whitney
,
L.
Burnham
, and
A.
Tuteja
, “
Facilitating large-scale snow shedding from in-field solar arrays using icephobic surfaces with low-interfacial toughness
,”
Adv. Mater. Technol.
7
,
2101032
(
2021
).
5.
O.
Fakorede
,
Z.
Feger
,
H.
Ibrahim
,
A.
Ilinca
,
J.
Perron
, and
C.
Masson
, “
Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis
,”
Renewable Sustainable Energy Rev.
65
,
662
(
2016
).
6.
Z. A.
Janjua
,
B.
Turnbull
,
S.
Hibberd
, and
K. S.
Choi
, “
Mixed ice accretion on aircraft wings
,”
Phys. Fluids
30
,
027101
(
2018
).
7.
O.
Parent
and
A.
Ilinca
, “
Anti-icing and de-icing techniques for wind turbines: Critical review
,”
Cold Reg. Sci. Technol.
65
,
88
(
2011
).
8.
S.
Wang
and
L.
Jiang
, “
Definition of superhydrophobic states
,”
Adv. Mater.
19
,
3423
(
2007
).
9.
A.
Alizadeh
,
M.
Yamada
,
R.
Li
,
W.
Shang
,
S.
Otta
,
S.
Zhong
,
L.
Ge
,
A.
Dhinojwala
,
K. R.
Conway
,
V.
Bahadur
,
A. J.
Vinciquerra
,
B.
Stephens
, and
M. L.
Blohm
, “
Dynamics of ice nucleation on water repellent surfaces
,”
Langmuir
28
,
3180
(
2012
).
10.
T.
Onda
,
S.
Shibuichi
,
N.
Satoh
, and
K.
Tsujii
, “
Super-water-repellent fractal surfaces
,”
Langmuir
12
,
2125
(
1996
).
11.
K. K.
Varanasi
,
T. J. D.
Deng
,
J. D.
Smith
,
M.
Hsu
, and
N.
Bhate
, “
Frost formation and ice adhesion on superhydrophobic surfaces
,”
Appl. Phys. Lett.
97
,
234102
(
2010
).
12.
J. C.
Bird
,
R.
Dhiman
,
H.-M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
(
2013
).
13.
M.
He
,
Y.
Ding
,
J.
Chen
, and
Y.
Song
, “
Spontaneous uphill movement and self-removal of condensates on hierarchical tower-like arrays
,”
ACS Nano
10
,
9456
(
2016
).
14.
L.
Wang
,
Z.
Tian
,
G.
Jiang
,
X.
Luo
,
C.
Chen
,
X.
Hu
,
H.
Zhang
, and
M.
Zhong
, “
Spontaneous dewetting transitions of droplets during icing and melting cycle
,”
Nat. Commun.
13
,
378
(
2022
).
15.
J.
Chen
,
J.
Liu
,
M.
He
,
K.
Li
,
D.
Cui
,
Q.
Zhang
,
X.
Zeng
,
Y.
Zhang
,
J.
Wang
, and
Y.
Song
, “
Superhydrophobic surfaces cannot reduce ice adhesion
,”
Appl. Phys. Lett.
101
,
111603
(
2012
).
16.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
,
443
(
2011
).
17.
P.
Kim
,
T.-S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
, “
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
,”
ACS Nano
6
,
6569
(
2012
).
18.
H.
Zheng
,
G.
Liu
,
B. B.
Nienhaus
, and
J. V.
Buddingh
, “
Ice-shedding polymer coatings with high hardness but low ice adhesion
,”
ACS Appl. Mater. Interfaces
14
,
6071
(
2022
).
19.
S. B.
Subramanyam
,
K.
Rykaczewski
, and
K. K.
Varanasi
, “
Ice adhesion on lubricant-impregnated textured surfaces
,”
Langmuir
29
,
13414
(
2013
).
20.
L.
Wang
and
T. J.
McCarthy
, “
Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency
,”
Angew. Chem., Int. Ed.
55
,
244
(
2016
).
21.
H.
Teisala
,
P.
Baumli
,
S. A. L.
Weber
,
D.
Vollmer
, and
H. J.
Butt
, “
Grafting silicone at room temperature—A transparent, scratch-resistant nonstick molecular coating
,”
Langmuir
36
,
4416
(
2020
).
22.
L.
Zhang
,
Z.
Guo
,
J.
Sarma
, and
X.
Dai
, “
Passive removal of highly wetting liquids and ice on quasi-liquid surfaces
,”
ACS Appl. Mater. Interfaces
12
,
20084
(
2020
).
23.
T.
Xiang
,
D.
Chen
,
Z.
Lv
,
Z.
Yang
,
L.
Yang
, and
C.
Li
, “
Robust superhydrophobic coating with superior corrosion resistance
,”
J. Alloys Compd.
798
,
320
(
2019
).
24.
K.
Golovin
,
S. P. R.
Kobaku
,
D. H.
Lee
,
E. T.
DiLoreto
,
J. M.
Mabry
, and
A.
Tuteja
, “
Designing durable icephobic surfaces
,”
Sci. Adv.
2
,
e1501496
(
2016
).
25.
L.
Yu
,
G. Y.
Chen
,
H.
Xu
, and
X.
Liu
, “
Substrate-independent, transparent oil-repellent coatings with self-healing and persistent easy-sliding oil repellency
,”
ACS Nano
10
,
1076
(
2016
).
26.
R.
Li
,
S.
Tian
,
Y.
Tian
,
J.
Wang
,
S.
Xu
,
K.
Yang
,
J.
Yang
, and
L.
Zhang
, “
An extreme-environment-resistant self-healing anti-icing coating
,”
Small
19
,
e2206075
(
2022
).
27.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S. R.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
, “
Autonomic healing of polymer composites
,”
Nature
409
,
794
(
2001
).
28.
D. M.
Kim
,
Y. J.
Cho
,
J. Y.
Choi
,
B. J.
Kim
,
S. W.
Jin
, and
C. M.
Chung
, “
Low-temperature self-healing of a microcapsule-type protective coating
,”
Materials
10
,
1079
(
2017
).
29.
S. H.
Cho
,
S. R.
White
, and
P. V.
Braun
, “
Self-healing polymer coatings
,”
Adv. Mater.
21
,
645
(
2009
).
30.
B.
Khatir
,
S.
Shabanian
, and
K.
Golovin
, “
Design and high-resolution characterization of silicon wafer-like omniphobic liquid layers applicable to any substrate
,”
ACS Appl. Mater. Interfaces
12
,
31933
(
2020
).
31.
H.
Zhao
,
Q.
Sun
,
J.
Zhou
,
X.
Deng
, and
J.
Cui
, “
Switchable cavitation in silicone coatings for energy-saving cooling and heating
,”
Adv. Mater.
32
,
e2000870
(
2020
).
32.
J.
Liu
,
Y.
Sun
,
X.
Zhou
,
X.
Li
,
M.
Kappl
,
W.
Steffen
, and
H. J.
Butt
, “
One-step synthesis of a durable and liquid-repellent poly(dimethylsiloxane) coating
,”
Adv. Mater.
33
,
e2100237
(
2021
).
33.
S.
Li
,
Y.
Hou
,
M.
Kappl
,
W.
Steffen
,
J.
Liu
, and
H. J.
Butt
, “
Vapor lubrication for reducing water and ice adhesion on poly(dimethylsiloxane) brushes
,”
Adv. Mater.
34
,
e2203242
(
2022
).
34.
J.
Ekeocha
,
C.
Ellingford
,
M.
Pan
,
A. M.
Wemyss
,
C.
Bowen
, and
C.
Wan
, “
Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments
,”
Adv. Mater.
33
,
e2008052
(
2021
).

Supplementary Material

You do not currently have access to this content.