Microcanonical unimolecular rate theory is applied to Shirhatti and Wodtke’s recent supersonic molecular beam experiments examining the activated dissociative chemisorption of HCl on Au(111). A precursor mediated microcanonical trapping (PMMT) model (where the surface vibrates and HCl rotations, vibration, and translation directed along the surface normal are treated as active degrees of freedom) gave dissociative sticking coefficient predictions that are several orders of magnitude higher than experimental values but in good accord with prior quantum and molecular dynamics simulations. Density functional theory (DFT) electronic structure calculations using the Perdew–Burke–Ernzerhof (PBE) functional served to fix the vibrational frequencies of the reactive transition state and the threshold energy for dissociation, E0 = 72.9 kJ/mol. To explore the possibilities of varying threshold energy, coupling to phonons, and dynamics, a three-parameter [E0, s, ɛn] dynamically biased (d-) PMMT model was fit to the experiments. A dynamical bias was introduced using an efficiency, ɛn, of normal translational energy to contribute to the active exchangeable energy capable of promoting reactivity. To achieve the low sticking probabilities observed in experiment, severe normal translational energy dampening (ɛn → 0.26) was imposed, leading to a large vibrational efficacy of ηv = εv/εn = 3.85. The optimal threshold energy for dissociation was E0 = 30.88 kJ/mol, some 40 kJ/mol below the PBE-DFT prediction, and the optimal number of Au surface oscillators was s = 1. The d-PMMT modeling indicates that HCl/Au(111) reactivity can be consistent with electronically adiabatic passage across a relatively low and late transition state that dynamically disfavors normal translational energy.

1.
P. R.
Shirhatti
,
J.
Geweke
,
C.
Steinsiek
,
C.
Bartels
,
I.
Rahinov
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
J. Phys. Chem. Lett.
7
,
1346
(
2016
).
2.
T. H.
Liu
,
B. N.
Fu
, and
D. H.
Zhang
,
Sci. China: Chem.
57
,
147
(
2014
).
3.
T.
Liu
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
146
,
164706
(
2017
).
4.
G.
Fuchsel
,
M.
del Cueto
,
C.
Diaz
, and
G. J.
Kroes
,
J. Phys. Chem. C
120
,
25760
(
2016
).
5.
G.
Fuchsel
,
X.
Zhou
,
B.
Jiang
,
J. I.
Juaristi
,
M.
Alducin
,
H.
Guo
, and
G. J.
Kroes
,
J. Phys. Chem. C
123
,
2287
(
2019
).
6.
N.
Gerrits
,
J.
Geweke
,
E. W. F.
Smeets
,
J.
Voss
,
A. M.
Wodtke
, and
G. J.
Kroes
,
J. Phys. Chem. C
124
,
15944
(
2020
).
7.
N.
Gerrits
,
J.
Geweke
,
D. J.
Auerbach
,
R. D.
Beck
, and
G. J.
Kroes
,
J. Phys. Chem. Lett.
12
,
7252
(
2021
).
8.
B.
Kolb
,
X.
Luo
,
X.
Zhou
,
B.
Jiang
, and
H.
Guo
,
J. Phys. Chem. Lett.
8
,
666
(
2017
).
9.
L.
Zhou
,
X.
Zhou
,
M.
Alducin
,
L.
Zhang
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
148
,
014702
(
2018
).
10.
K.
Topfer
,
M.
Upadhyay
, and
M.
Meuwly
,
Phys. Chem. Chem. Phys.
24
,
12767
(
2022
).
11.
I.
Rahinov
,
R.
Cooper
,
D.
Matsiev
,
C.
Bartels
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Phys. Chem. Chem. Phys.
13
,
12680
(
2011
).
12.
C. L.
Box
,
Y. L.
Zhang
,
R. R.
Yin
,
B.
Jiang
, and
R. J.
Maurer
,
JACS Au
1
,
164
(
2021
).
13.
S. B.
Donald
,
J. K.
Navin
, and
I.
Harrison
,
J. Chem. Phys.
139
,
214707
(
2013
).
14.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
,
J. Chem. Phys.
118
,
843
(
2003
).
15.
S. B.
Donald
and
I.
Harrison
,
J. Phys. Chem. C
118
,
320
(
2014
).
16.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
J. Chem. Phys.
102
,
4625
(
1995
).
17.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johanek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
17222
(
2010
).
18.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johanek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
22790
(
2010
).
19.
B.
Hammer
,
M.
Scheffler
,
K. W.
Jacobsen
, and
J. K.
Norskov
,
Phys. Rev. Lett.
73
,
1400
(
1994
).
20.
R. G.
Zhang
,
L. Z.
Song
, and
Y. H.
Wang
,
Appl. Surf. Sci.
258
,
7154
(
2012
).
21.
C.
Diaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Science
326
,
832
(
2009
).
22.
F.
Nattino
,
D.
Migliorini
,
M.
Bonfanti
, and
G. J.
Kroes
,
J. Chem. Phys.
144
,
044702
(
2016
).
23.
H.
Guo
and
B.
Jackson
,
J. Chem. Phys.
144
,
184709
(
2016
).
24.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
25.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
26.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
27.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
30.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
31.
A.
Fire
, MedeA,
Materials Design, Inc.
,
NM, USA
,
2012
.
32.
Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org/,
2022
.
33.
J. K.
Navin
,
S. B.
Donald
, and
I.
Harrison
,
J. Phys. Chem. C
118
,
22003
(
2014
).
34.
H. L.
Abbott
and
I.
Harrison
,
J. Phys. Chem. C
111
,
13137
(
2007
).
35.
D. F.
Kavulak
,
H. L.
Abbott
, and
I.
Harrison
,
J. Phys. Chem. B
109
,
685
(
2005
).
36.
W.
Forst
,
Unimolecular Reactions: A Concise Introduction
, 1st ed. (
Cambridge University Press
,
Cambridge, UK
,
2003
).
37.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules
(
Van Nostrand Reinhold Company
,
1979
).
38.
C.
Kittel
and
P. L.
McEuen
,
Introduction to Solid State Physics
, 5th ed. (
John Wiley and Sons, Inc.
,
2005
).
39.
W. H.
Miller
,
J. Am. Chem. Soc.
101
,
6810
(
1979
).
40.
J. F.
Weaver
,
M. A.
Krzyzowski
, and
R. J.
Madix
,
J. Chem. Phys.
112
,
396
(
2000
).
41.
A. C.
Luntz
and
D. S.
Bethune
,
J. Chem. Phys.
90
,
1274
(
1989
).
42.
L.
Xia
and
J. R.
Engstrom
,
J. Chem. Phys.
101
,
5329
(
1994
).
43.
S. B.
Donald
and
I.
Harrison
,
Phys. Chem. Chem. Phys.
14
,
1784
(
2012
).
44.
Q.
Liu
,
X.
Zhou
,
L.
Zhou
,
Y.
Zhang
,
X.
Luo
,
H.
Guo
, and
B.
Jiang
,
J. Phys. Chem. C
122
,
1761
(
2018
).
45.
S.
Pratihar
,
X.
Ma
,
Z.
Homayoon
,
G. L.
Barnes
, and
W. L.
Hase
,
J. Am. Chem. Soc.
139
,
3570
(
2017
).
46.
K. R.
Lykke
and
B. D.
Kay
,
J. Chem. Phys.
92
,
2614
(
1990
).
47.
T.
Liu
,
H.
Shi
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
157
,
244702
(
2022
).
48.
J.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Am. Chem. Soc.
135
,
982
(
2013
).
49.
J. C.
Polanyi
and
W. H.
Wong
,
J. Chem. Phys.
51
,
1439
(
1969
).
50.
K. K.
Lehmann
,
G.
Scoles
, and
B. H.
Pate
,
Annu. Rev. Phys. Chem.
45
,
241
(
1994
).
51.
A. L.
Utz
,
Curr. Opin. Solid State Mater. Sci.
13
,
4
(
2009
).
52.
J.
Keske
and
B.
Pate
,
Annu. Rev. Phys. Chem.
51
,
323
(
2000
).
53.
R.
Cooper
,
I.
Rahinov
,
C.
Yuan
,
X.
Yang
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
J. Vac. Sci. Technol. A
27
,
907
(
2009
).
54.
J.
Geweke
,
P. R.
Shirhatti
,
I.
Rahinov
,
C.
Bartels
, and
A. M.
Wodtke
,
J. Chem. Phys.
145
,
054709
(
2016
).
55.
R. C.
Baetzold
and
D. J.
Wilson
,
J. Phys. Chem.
68
,
3141
(
1964
).
56.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
, 2nd ed. (
Prentice-Hall, Inc.
,
1999
).
57.
T.
Schafer
,
N.
Bartels
,
K.
Golibrzuch
,
C.
Bartels
,
H.
Kockert
,
D. J.
Auerbach
,
T. N.
Kitsopoulos
, and
A. M.
Wodtke
,
Phys. Chem. Chem. Phys.
15
,
1863
(
2013
).
58.
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
23
,
8962
(
2021
).
59.
H.
Michelsen
,
C. T.
Rettner
,
D.
Auerbach
, and
R. N.
Zare
,
J. Chem. Phys.
98
,
8294
(
1993
).
60.
C. T.
Rettner
,
L. A.
DeLouise
, and
D.
Auerbach
,
J. Chem. Phys.
85
,
1131
(
1986
).
61.
A. C.
Luntz
,
J. Chem. Phys.
113
,
6901
(
2000
).
62.
J.
Gardner
,
S.
Habershon
, and
R. J.
Maurer
,
J. Phys. Chem. C
127
,
15257
(
2023
).
63.
T.
Liu
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
140
,
144701
(
2014
).
64.
G.
Fuchsel
,
P. S.
Thomas
,
J.
den Uyl
,
Y.
Ozturk
,
F.
Nattino
,
H. D.
Meyer
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
18
,
8174
(
2016
).
65.
G. B.
Park
,
B. C.
Kruger
,
D.
Borodin
,
T. N.
Kitsopoulos
, and
A. M.
Wodtke
,
Rep. Prog. Phys.
82
,
096401
(
2019
).
66.
B.
Yoder
,
R.
Bisson
,
P.
Morten Hundt
, and
R. D.
Beck
,
J. Chem. Phys.
135
,
224703
(
2011
).

Supplementary Material

You do not currently have access to this content.