Glutaronitrile (GN) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at concentrations below and above the room-temperature conductivity optimum near 1M of Li salt is investigated using dielectric spectroscopy and shear rheology. The experiments are carried out from ambient down to the glass transition temperature Tg, which increases considerably as LiTFSI is admixed to GN. As the temperature is lowered, the conductivity optimum shifts to lower salt concentrations, while the power-law exponents connecting resistivity and molecular reorientation time remain smallest for the 1M composition. By contrast, the rheologically detected time constants, as well as those obtained using dielectric spectroscopy, increase monotonically with increasing Li salt concentration for all temperatures. It is demonstrated that the shear mechanical measurements are, nevertheless, sensitive to the 1M conductivity optimum, thus elucidating the interplay of the dinitrile matrix with the mobile species. The data for the Li doped GN and other nitrile solvents all follow about the same Walden line, in harmony with their highly conductive character. The composition dependent relation between the ionic and the reorientational dynamics is also elucidated.

1.
H.
Wang
,
Z.
Yu
,
X.
Kong
,
S. C.
Kim
,
D. T.
Boyle
,
J.
Qin
,
Z.
Bao
, and
Y.
Cui
, “
Liquid electrolyte: The nexus of practical lithium metal batteries
,”
Joule
6
,
588
(
2022
).
2.
Q.
Liu
,
R.
Xu
,
D.
Mu
,
G.
Tan
,
H.
Gao
,
N.
Li
,
R.
Chen
, and
F.
Wu
, “
Progress in electrolyte and interface of hard carbon and graphite anode for sodium‐ion battery
,”
Carbon Energy
4
,
458
(
2022
).
3.
D.
Hubble
,
D. E.
Brown
,
Y.
Zhao
,
C.
Fang
,
J.
Lau
,
B. D.
McCloskey
, and
G.
Liu
, “
Liquid electrolyte development for low-temperature lithium-ion batteries
,”
Energy Environ. Sci.
15
,
550
(
2022
).
4.
J.
Lai
,
Y.
Xing
,
N.
Chen
,
L.
Li
,
F.
Wu
, and
R.
Chen
, “
Electrolytes for rechargeable lithium–air batteries
,”
Angew. Chem., Int. Ed.
59
,
2974
(
2020
).
5.
W.
Chen
,
T.
Lei
,
C.
Wu
,
M.
Deng
,
C.
Gong
,
K.
Hu
,
Y.
Ma
,
L.
Dai
,
W.
Lv
,
W.
He
,
X.
Liu
,
J.
Xiong
, and
C.
Yan
, “
Designing safe electrolyte systems for a high-stability lithium-sulfur battery
,”
Adv. Energy Mater.
8
,
1702348
(
2018
).
6.
M.
Li
,
C.
Wang
,
Z.
Chen
,
K.
Xu
, and
J.
Lu
, “
New concepts in electrolytes
,”
Chem. Rev.
120
,
6783
(
2020
).
7.
K. S.
Ngai
,
S.
Ramesh
,
K.
Ramesh
, and
J. C.
Juan
, “
A review of polymer electrolytes: Fundamental, approaches and applications
,”
Ionics
22
,
1259
(
2016
).
8.
M.
Marcinek
,
J.
Syzdek
,
M.
Marczewski
,
M.
Piszcz
,
L.
Niedzicki
,
M.
Kalita
,
A.
Plewa-Marczewska
,
A.
Bitner
,
P.
Wieczorek
,
T.
Trzeciak
,
M.
Kasprzyk
,
P.
Łężak
,
Z.
Zukowska
,
A.
Zalewska
, and
W.
Wieczorek
, “
Electrolytes for Li-ion transport–Review
,”
Solid State Ionics
276
,
107
(
2015
).
9.
P.-J.
Alarco
,
Y.
Abu-Lebdeh
,
A.
Abouimrane
, and
M.
Armand
, “
The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors
,”
Nat. Mater.
3
,
476
(
2004
).
10.
T.
Bauer
,
M.
Köhler
,
P.
Lunkenheimer
,
A.
Loidl
, and
C. A.
Angell
, “
Relaxation dynamics and ionic conductivity in a fragile plastic crystal
,”
J. Chem. Phys.
133
,
144509
(
2010
).
11.
M.
Götz
,
T.
Bauer
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Supercooled-liquid and plastic-crystalline state in succinonitrile-glutaronitrile mixtures
,”
J. Chem. Phys.
140
,
094504
(
2014
).
12.
M.
Zachariah
,
M.
Romanini
,
P.
Tripathi
,
J. L.
Tamarit
, and
R.
Macovez
, “
Molecular diffusion and dc conductivity perfectly correlated with molecular rotational dynamics in a plastic crystalline electrolyte
,”
Phys. Chem. Chem. Phys.
17
,
16053
(
2015
).
13.
M.
Zachariah
,
M.
Romanini
,
P.
Tripathi
,
M.
Barrio
,
J. L.
Tamarit
, and
R.
Macovez
, “
Self-Diffusion, phase behavior, and Li+ ion conduction in succinonitrile-based plastic cocrystals
,”
J. Phys. Chem. C
119
,
27298
(
2015
).
14.
S.
Davidowski
,
A. R.
Young-Gonzales
,
R.
Richert
,
J.
Yarger
, and
C. A.
Angell
, “
Relation of ionic conductivity to solvent rotation times in dinitrile plastic crystal solvents
,”
J. Electrochem. Soc.
167
,
070553
(
2020
).
15.
S. K.
Davidowski
,
J. L.
Yarger
,
R.
Richert
, and
C. A.
Angell
, “
Reorientation times for solid-state electrolyte solvents and electrolytes from NMR spin–lattice relaxation studies
,”
J. Phys. Chem. Lett.
11
,
3301
(
2020
).
16.
S.
Lansab
,
P.
Münzner
,
H.
Zimmermann
, and
R.
Böhmer
, “
Deuteron nuclear magnetic resonance and dielectric studies of molecular reorientation and charge transport in succinonitrile-glutaronitrile plastic crystals
,”
J. Non-Cryst. Solids: X
14
,
100097
(
2022
).
17.
D.
Farhat
,
D.
Lemordant
,
J.
Jacquemin
, and
F.
Ghamouss
, “
Alternative electrolytes for Li-ion batteries using glutaronitrile and 2-methylglutaronitrile with lithium bis(trifluoromethanesulfonyl) imide
,”
J. Electrochem. Soc.
166
,
A3487
(
2019
).
18.
M.
Yao
,
R.
Pan
,
Y.
Ren
,
Y.
Fu
,
Y.
Qin
,
C.
Mao
,
Z.
Zhang
,
X.
Guo
, and
G.
Li
, “
Regulating solvation shells and interfacial chemistry in zinc-ion batteries using glutaronitrile based electrolyte
,”
J. Mater. Chem. A
10
,
14345
(
2022
).
19.
W. J.
Orville-Thomas
, “
Tables of experimental dipole moments, vol. 2
,”
J. Mol. Struct.
36
,
165
(
1977
).
20.
Y.
Ugata
,
R.
Tatara
,
K.
Ueno
,
K.
Dokko
, and
M.
Watanabe
, “
Highly concentrated LiN(SO2CF3)2/dinitrile electrolytes: Liquid structures, transport properties, and electrochemistry
,”
J. Chem. Phys.
152
,
104502
(
2020
).
21.
S.
Lansab
,
B.
Grabe
, and
R.
Böhmer
, “
Paddle-wheel mechanism in doped succinonitrile–glutaronitrile plastic electrolyte: A joint magnetic resonance, dielectric, and viscosimetry study of Li ion translational and molecular reorientational dynamics
,”
Phys. Chem. Chem. Phys.
25
,
9382
(
2023
).
22.
D.
Yaakov
,
Y.
Gofer
,
D.
Aurbach
, and
I. C.
Halalay
, “
On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range
,”
J. Electrochem. Soc.
157
,
A1383
(
2010
).
23.
P.
Derollez
,
J.
Lefebvre
,
M.
Descamps
,
W.
Press
, and
H.
Fontaine
, “
Structure of succinonitrile in its plastic phase
,”
J. Phys.: Condens. Matter
2
,
6893
(
1990
).
24.
C. A.
Angell
, “
Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems
,”
J. Non-Cryst. Solids
131–133
,
13
(
1991
).
25.
K.
Geirhos
,
P.
Lunkenheimer
,
M.
Michl
,
D.
Reuter
, and
A.
Loidl
, “
Communication: Conductivity enhancement in plastic-crystalline solid-state electrolytes
,”
J. Chem. Phys.
143
,
081101
(
2015
).
26.
X.
Wang
,
X.
Zheng
,
Y.
Liao
,
Q.
Huang
,
L.
Xing
,
M.
Xu
, and
W.
Li
, “
Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive
,”
J. Power Sources
338
,
108
(
2017
).
27.
H.
Zhi
,
L.
Xing
,
X.
Zheng
,
K.
Xu
, and
W.
Li
, “
Understanding how nitriles stabilize electrolyte/electrode interface at high voltage
,”
J. Phys. Chem. Lett.
8
,
6048
(
2017
).
28.
T.
Li
,
J.
Lin
,
L.
Xing
,
Y.
Zhong
,
H.
Chai
,
W.
Yang
,
J.
Li
,
W.
Fan
,
J.
Zhao
, and
W.
Li
, “
Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode
,”
J. Phys. Chem. Lett.
13
,
8801
(
2022
).
29.
T.
Ohzuku
,
A.
Ueda
,
M.
Nagayama
,
Y.
Iwakoshi
, and
H.
Komori
, “
Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells
,”
Electrochim. Acta
38
,
1159
(
1993
).
30.
M.
Broussely
,
P.
Biensan
, and
B.
Simon
, “
Lithium insertion into host materials: The key to success for Li ion batteries
,”
Electrochim. Acta
45
,
3
(
1999
).
31.
K.
Guo
,
S.
Qi
,
H.
Wang
,
J.
Huang
,
M.
Wu
,
Y.
Yang
,
X.
Li
,
Y.
Ren
, and
J.
Ma
, “
High‐voltage electrolyte chemistry for lithium batteries
,”
Small Sci.
2
,
2100107
(
2022
).
32.
Y.
Abu-Lebdeh
and
I.
Davidson
, “
High-voltage electrolytes based on adiponitrile for Li-ion batteries
,”
J. Electrochem. Soc.
156
,
A60
(
2009
).
33.
Y.
Abu-Lebdeh
and
I.
Davidson
, “
New electrolytes based on glutaronitrile for high energy/power Li-ion batteries
,”
J. Power Sources
189
,
576
(
2009
).
34.
Y.
Yamada
and
A.
Yamada
, “
Review—Superconcentrated electrolytes for lithium batteries
,”
J. Electrochem. Soc.
162
,
A2406
(
2015
).
35.
Y.
Yamada
,
J.
Wang
,
S.
Ko
,
E.
Watanabe
, and
A.
Yamada
, “
Advances and issues in developing salt-concentrated battery electrolytes
,”
Nat. Energy
4
,
269
(
2019
).
36.
C. A.
Angell
,
C.
Liu
, and
E.
Sanchez
, “
Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity
,”
Nature
362
,
137
(
1993
).
37.
O.
Borodin
,
J.
Self
,
K. A.
Persson
,
C.
Wang
, and
K.
Xu
, “
Uncharted waters: Super-concentrated electrolytes
,”
Joule
4
,
69
(
2020
).
38.
L. S.
Kremer
,
T.
Danner
,
S.
Hein
,
A.
Hoffmann
,
B.
Prifling
,
V.
Schmidt
,
A.
Latz
, and
M.
Wohlfahrt‐Mehrens
, “
Influence of the electrolyte salt concentration on the rate capability of ultra‐thick NCM 622 electrodes
,”
Batteries Supercaps
3
,
1172
(
2020
).
39.
Y.
Ugata
,
M. L.
Thomas
,
T.
Mandai
,
K.
Ueno
,
K.
Dokko
, and
M.
Watanabe
, “
Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes
,”
Phys. Chem. Chem. Phys.
21
,
9759
(
2019
).
40.
S.
Chen
,
J.
Zheng
,
D.
Mei
,
K. S.
Han
,
M. H.
Engelhard
,
W.
Zhao
,
W.
Xu
,
J.
Liu
, and
J.
Zhang
, “
High‐voltage lithium‐metal batteries enabled by localized high‐concentration electrolytes
,”
Adv. Mater.
30
,
1706102
(
2018
).
41.
J.
Wang
,
Y.
Yamada
,
K.
Sodeyama
,
C. H.
Chiang
,
Y.
Tateyama
, and
A.
Yamada
, “
Superconcentrated electrolytes for a high-voltage lithium-ion battery
,”
Nat. Commun.
7
,
12032
(
2016
).
42.
Y.
Yamada
,
K.
Furukawa
,
K.
Sodeyama
,
K.
Kikuchi
,
M.
Yaegashi
,
Y.
Tateyama
, and
A.
Yamada
, “
Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries
,”
J. Am. Chem. Soc.
136
,
5039
(
2014
).
43.
L.
Suo
,
Y.-S.
Hu
,
H.
Li
,
M.
Armand
, and
L.
Chen
, “
A new class of solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
,”
Nat. Commun.
4
,
1481
(
2013
).
44.
J.
Wang
,
Q.
Zheng
,
M.
Fang
,
S.
Ko
,
Y.
Yamada
, and
A.
Yamada
, “
Concentrated electrolytes widen the operating temperature range of lithium-ion batteries
,”
Adv. Sci.
8
,
2101646
(
2021
).
45.
D.
Farhat
, “
Etude d’électrolytes à base de dinitriles aliphatiques pour des batteries Li-ion
,” PhD. Dissertation, (
Université de Tours
,
2017
) retrieved on 12/06/2023 http://www.theses.fr/2017TOUR4035/document
46.
C. J.
Franko
,
C.-H.
Yim
,
F.
Aren
,
G.
Avall
,
P. S.
Whitfield
,
P.
Johansson
,
Y. A.
Abu-Lebdeh
, and
G. R.
Goward
, “
Concentration dependent solution structure and transport mechanism in high voltage LiTFSI-adiponitrile electrolytes
,”
J. Electrochem. Soc.
167
,
160532
(
2020
).
47.
T. R.
Kartha
and
B. S.
Mallik
, “
Molecular dynamics and emerging network graphs of interactions in dinitrile-based Li-ion battery electrolytes
,”
J. Phys. Chem. B
125
,
7231
(
2021
).
48.
C. A.
Angell
, “
Dynamic processes in ionic glasses
,”
Chem. Rev.
90
,
523
(
1990
).
49.
P.
Sippel
,
P.
Lunkenheimer
,
S.
Krohns
,
E.
Thoms
, and
A.
Loidl
, “
Importance of liquid fragility for energy applications of ionic liquids
,”
Sci. Rep.
5
,
13922
(
2015
).
50.
P.
Sippel
,
S.
Krohns
,
D.
Reuter
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Importance of reorientational dynamics for the charge transport in ionic liquids
,”
Phys. Rev. E
98
,
052605
(
2018
).
51.
L.
Wu
,
R. I.
Venkatanarayananan
,
X.
Shi
,
D.
Roy
, and
S.
Krishnan
, “
Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids
,”
J. Mol. Liq.
198
,
398
(
2014
).
52.
Y. A.
Elhamarnah
,
M.
Nasser
,
H.
Qiblawey
,
A.
Benamor
,
M.
Atilhan
, and
S.
Aparicio
, “
A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents
,”
J. Mol. Liq.
277
,
932
(
2019
).
53.
C. J. F.
Böttcher
,
O. C.
van Belle
,
P.
Bordewijk
,
A.
Rip
, and
D. D.
Yue
, “
Theory of electric polarization
,”
J. Electrochem. Soc.
121
,
211C
(
1974
).
54.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
Berlin, Heidelberg
,
2003
).
55.
P.
Steeman
and
J.
van Turnhout
, “
Fine structure in the parameters of dielectric and viscoelastic relaxations
,”
Macromolecules
27
,
5421
(
1994
).
56.
M.
Wübbenhorst
and
J.
van Turnhout
, “
Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling
,”
J. Non-Cryst. Solids
305
,
40
(
2002
).
57.

For the 11% and the 25% samples, the J′ spectra (not shown) are overlaid by an instrumental low-torque artifact so that the recoverable compliance cannot reliably be determined.

58.
T.
Hecksher
and
J. C.
Dyre
, “
A review of experiments testing the shoving model
,”
J. Non-Cryst. Solids
407
,
14
(
2015
).
59.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
, “
Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids
,”
Phys. Rev. B
53
,
2171
(
1996
).
60.
J. C.
Dyre
,
T.
Christensen
, and
N. B.
Olsen
, “
Elastic models for the non-Arrhenius viscosity of glass-forming liquids
,”
J. Non-Cryst. Solids
352
,
4635
(
2006
).
61.
C. A.
Angell
, “
Strong and fragile liquids
,” in
Relaxations in Complex Systems
, edited by
K. L.
Ngai
and
G. B.
Wright
(
NRL
,
Washington, DC
,
1985
), p.
3
.
62.
F.
Mizuno
,
J. P.
Belieres
,
N.
Kuwata
,
A.
Pradel
,
M.
Ribes
, and
C. A.
Angell
, “
Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes
,”
J. Non-Cryst. Solids
352
,
5147
(
2006
).
63.
R.
Böhmer
and
C. A.
Angell
, “
Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge–As–Se supercooled liquids
,”
Phys. Rev. B
45
,
10091
(
1992
).
64.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Nonexponential relaxations in strong and fragile glass formers
,”
J. Chem. Phys.
99
,
4201
(
1993
).
65.
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G.
Fleischer
, “
Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition
,”
Z. Phys. B Condens. Matter
88
,
195
(
1992
).
66.
J.
Jäckle
and
R.
Richert
, “
Why retardation takes more time than relaxation in a linear medium
,”
Phys. Rev. E
77
,
031201
(
2008
).
67.
See
J.
Pitawala
,
J. K.
Kim
,
P.
Jacobsson
,
V.
Koch
,
F.
Croce
,
A.
Matic
, and
A.
Matic
, “
Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids
,”
Faraday Discuss.
154
,
71
(
2012
).
68.
See
H.
Kanno
, “
A simple derivation of the empirical rule Tg/Tm = 2/3
,”
J. Non-Cryst. Solids
44
,
409
(
1981
) and references cited therein.
69.
J. T.
Edward
, “
Molecular volumes and the Stokes–Einstein equation
,”
J. Chem. Educ.
47
,
261
(
1970
).
70.
M.
Ue
, “
Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ‐butyrolactone
,”
J. Electrochem. Soc.
141
,
3336
(
1994
).
71.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
(
1964
).
72.
C.
Liu
and
C. A.
Angell
, “
Mechanical vs electrical relaxation in Agl-based fast ion conducting glasses
,”
J. Non-Cryst. Solids
83
,
162
(
1986
).
73.
S.
Ahlmann
,
P.
Münzner
,
K.
Moch
,
A. P.
Sokolov
,
R.
Böhmer
, and
C.
Gainaru
, “
The relationship between charge and molecular dynamics in viscous acid hydrates
,”
J. Chem. Phys.
155
,
014505
(
2021
).
74.
W.
Xu
,
E. I.
Cooper
, and
C. A.
Angell
, “
Ionic liquids: Ion mobilities, glass temperatures, and fragilities
,”
J. Phys. Chem. B
107
,
6170
(
2003
).
75.
M.
Yoshizawa
,
W.
Xu
, and
C. A.
Angell
, “
Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions
,”
J. Am. Chem. Soc.
125
,
15411
(
2003
).
76.
K. R.
Harris
, “
On the use of the Angell–Walden equation to determine the ‘ionicity’ of molten salts and ionic liquids
,”
J. Phys. Chem. B
123
,
7014
(
2019
).
77.
The ΔW shift has variously been interpreted to provide a means to determine the degree of ionicity, see, e.g.,
S.
Thawarkar
,
N. D.
Khupse
, and
A.
Kumar
, “
Comparative investigation of the ionicity of aprotic and protic ionic liquids in molecular solvents by using conductometry and NMR spectroscopy
,”
ChemPhysChem
17
,
1006
(
2016
) or
[PubMed]
Y.
Wang
,
W.
Chen
,
Q.
Zhao
,
G. J. Z.
Xue
, and
Y.
Wang
, and
T.
Mu
, “
Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR)
,”
Phys. Chem. Chem. Phys.
22
,
25760
(
2020
) a view which, however, can lead to inconsistencies, see Ref. 76.
[PubMed]
78.
Y.
Zhang
,
Y.
Wang
,
Y.
Zhang
,
J.
Zhao
,
Y.
Liu
,
Y.
Guan
, and
Y.
Zhang
, “
‘Water‐salt‐in‐deep eutectic solvent’ method to optimize conductivity, viscosity and freeze resistance for eutectic electrolytes
,”
Batteries Supercaps
5
,
e202200305
(
2022
).
79.
M. L.
Martins
,
X.
Lin
,
C.
Gainaru
,
J. K.
Keum
,
P. T.
Cummings
,
A. P.
Sokolov
,
R. L.
Sacci
, and
E.
Mamontov
, “
Structure–dynamics interrelation governing charge transport in cosolvated acetonitrile/LiTFSI solutions
,”
J. Phys. Chem. B
127
,
308
(
2023
).
80.
D.
Farhat
,
F.
Ghamouss
,
J.
Maibach
,
K.
Edström
, and
D.
Lemordant
, “
Adiponitrile–lithium bis(trimethylsulfonyl) imide solutions as alkyl carbonate‐free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2(NMC) Li‐ion batteries
,”
ChemPhysChem
18
,
1333
(
2017
).
81.
D.
Reuter
,
P.
Münzner
,
C.
Gainaru
,
P.
Lunkenheimer
,
A.
Loidl
, and
R.
Böhmer
, “
Translational and reorientational dynamics in deep eutectic solvents
,”
J. Chem. Phys.
154
,
154501
(
2021
).
82.
A.
Jani
,
B.
Malfait
, and
D.
Morineau
, “
On the coupling between ionic conduction and dipolar relaxation in deep eutectic solvents: Influence of hydration and glassy dynamics
,”
J. Chem. Phys.
154
,
164508
(
2021
).
83.
A.
Schulz
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Lithium-salt-based deep eutectic solvents: Importance of glass formation and rotation-translation coupling for the ionic charge transport
,”
J. Chem. Phys.
155
,
044503
(
2021
).

Supplementary Material

You do not currently have access to this content.