Hydration and, in particular, the coordination number of a metal ion is of paramount importance as it defines many of its (bio)physicochemical properties. It is not only essential for understanding its behavior in aqueous solutions but also determines the metal ion reference state and its binding energy to (bio)molecules. In this paper, for divalent metal cations Ca2+, Cd2+, Cu2+, Fe2+, Hg2+, Mg2+, Ni2+, Pb2+, and Zn2+, we compare two approaches for predicting hydration numbers: (1) a mixed explicit/continuum DFT-D3//COSMO-RS solvation model and (2) density functional theory based ab initio molecular dynamics. The former approach is employed to calculate the Gibbs free energy change for the sequential hydration reactions, starting from [M(H2O)2]2+ aqua complexes to [M(H2O)9]2+, allowing explicit water molecules to bind in the first or second coordination sphere and determining the most stable [M(H2O)n]2+ structure. In the latter approach, the hydration number is obtained by integrating the ion–water radial distribution function. With a couple of exceptions, the metal ion hydration numbers predicted by the two approaches are in mutual agreement, as well as in agreement with the experimental data.

1.
M.
Stillman
, in
Biological Inorganic Chemistry. Structure and Reactivity
, edited by
I.
Bertini
,
H. B.
Gray
,
E. I.
Stiefel
, and
J. S.
Valentine
(
University Science Book
,
2007
).
2.
T.
Dudev
and
C.
Lim
, “
Metal binding affinity and selectivity in metalloproteins: Insights from computational studies
,”
Annu. Rev. Biophys.
37
,
97
116
(
2008
).
3.
T. A.
Mohammed
,
C. M.
Meier
,
T.
Kalvoda
,
M.
Kalt
,
L.
Rulíšek
, and
M. S.
Shoshan
, “
Potent cyclic tetrapeptide for lead detoxification
,”
Angew. Chem., Int. Ed.
60
,
12381
12385
(
2021
).
4.
L.
Sauser
,
T.
Kalvoda
,
A.
Kavas
,
L.
Rulíšek
, and
M. S.
Shoshan
, “
Cyclic octapeptides composed of two glutathione units outperform the monomer in lead detoxification
,”
ChemMedChem
17
,
e202200152
(
2022
).
5.
L.
Sauser
,
T. A.
Mohammed
,
T.
Kalvoda
,
S.-J.
Feng
,
B.
Spingler
,
L.
Rulíšek
, and
M. S.
Shoshan
, “
Thiolation and carboxylation of glutathione synergistically enhance its lead-detoxification capabilities
,”
Inorg. Chem.
60
,
18620
18624
(
2021
).
6.
O.
Gutten
and
L.
Rulíšek
, “
Predicting the stability constants of metal-ion complexes from first principles
,”
Inorg. Chem.
52
,
10347
10355
(
2013
).
7.
I.
Persson
, “
Structures of hydrated metal ions in solid state and aqueous solution
,”
Liquids
2
,
210
242
(
2022
).
8.
H.
Ohtaki
and
T.
Radnai
, “
Structure and dynamics of hydrated ions
,”
Chem. Rev.
93
,
1157
1204
(
1993
).
9.
G.
Johansson
, “
Structures of complexes in solution derived from X-ray diffraction measurements
,” in
Advances in Inorganic Chemistry
, edited by
A. G.
Sykes
(
Academic Press
,
1992
), Vol.
39
, pp.
159
232
.
10.
E. A.
Stern
,
D. E.
Sayers
, and
F. W.
Lytle
, “
Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters
,”
Phys. Rev. B
11
,
4836
4846
(
1975
).
11.
G. W.
Neilson
, “
Diffraction studies of aqueous electrolyte solutions
,”
Pure Appl. Chem.
60
,
1797
1806
(
1988
).
12.
E.
Constable
,
J. A.
McCleverty
, and
T. J.
Meyer
,
Comprehensive Coordination Chemistry II: From Biology to Nanotechnology
, 2nd ed. (
Elsevier Science
,
Amsterdam; Boston
,
2003
).
13.
G.
Bunker
,
Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2010
).
14.
J. J.
Rehr
and
R. C.
Albers
, “
Theoretical approaches to x-ray absorption fine structure
,”
Rev. Mod. Phys.
72
,
621
654
(
2000
).
15.
J.
Chaboy
,
A.
Muñoz-Páez
,
P. J.
Merkling
, and
E.
Sánchez Marcos
, “
The hydration of Cu2+: Can the Jahn-Teller effect be detected in liquid solution?
,”
J. Chem. Phys.
124
,
064509
(
2006
).
16.
M. M.
Probst
,
T.
Radnai
,
K.
Heinzinger
,
P.
Bopp
, and
B. M.
Rode
, “
Molecular dynamics and x-ray investigation of an aqueous calcium chloride solution
,”
J. Phys. Chem.
89
,
753
759
(
1985
).
17.
D.
Spångberg
,
K.
Hermansson
,
P.
Lindqvist-Reis
,
F.
Jalilehvand
,
M.
Sandström
, and
I.
Persson
, “
Model extended X-ray absorption fine structure (EXAFS) spectra from molecular dynamics data for Ca2+ and Al3+ aqueous solutions
,”
J. Phys. Chem. B
104
,
10467
10472
(
2000
).
18.
N. A.
Hewish
,
G. W.
Neilson
, and
J. E.
Enderby
, “
Environment of Ca2+ ions in aqueous solvent
,”
Nature
297
,
138
139
(
1982
).
19.
F.
Jalilehvand
,
D.
Spångberg
,
P.
Lindqvist-Reis
,
K.
Hermansson
,
I.
Persson
, and
M.
Sandström
, “
Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study
,”
J. Am. Chem. Soc.
123
,
431
441
(
2001
).
20.
W. W.
Rudolph
and
G.
Irmer
, “
Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4, Cl, Br, and NO3)
,”
Dalton Trans.
42
,
3919
3935
(
2013
).
21.
H.
Kanno
, “
Nonexistence of hydration number change of Cd2+ ions in aqueous Cd(NO3)2 solution
,”
Bull. Chem. Soc. Jpn.
59
,
3651
3652
(
1986
).
22.
P.
D’Angelo
,
G.
Chillemi
,
V.
Barone
,
G.
Mancini
,
N.
Sanna
, and
I.
Persson
, “
Experimental evidence for a variable first coordination shell of the cadmium(II) ion in aqueous, dimethyl sulfoxide, and N,N′-dimethylpropyleneurea solution
,”
J. Phys. Chem. B
109
,
9178
9185
(
2005
).
23.
A.
Pasquarello
,
I.
Petri
,
P. S.
Salmon
,
O.
Parisel
,
R.
Car
,
E.
Tóth
,
D. H.
Powell
,
H. E.
Fischer
,
L.
Helm
, and
A. E.
Merbach
, “
First solvation shell of the Cu(II) aqua ion: Evidence for fivefold coordination
,”
Science
291
,
856
859
(
2001
).
24.
Q.
Ye
,
X.
Chen
,
J.
Zhou
,
H. F.
Zhao
,
W. S.
Chu
,
X. S.
Zheng
,
A.
Marcelli
, and
Z. Y.
Wu
, “
Local hydrated structure of an Fe2+/Fe3+ aqueous solution: An investigation using a combination of molecular dynamics and X-ray absorption fine structure methods
,”
Chin. Phys. C
37
,
038003
(
2013
).
25.
E.
Kálmán
,
T.
Radnai
,
G.
Pálinkás
,
F.
Hajdu
, and
A.
Vértes
, “
Hydration of iron(II) ion in aqueous solutions
,”
Electrochim. Acta
33
,
1223
1228
(
1988
).
26.
O.
Sobolev
,
G. J.
Cuello
,
G.
Román-Ross
,
N. T.
Skipper
, and
L.
Charlet
, “
Hydration of Hg2+ in aqueous solution studied by neutron diffraction with isotopic substitution
,”
J. Phys. Chem. A
111
,
5123
5125
(
2007
).
27.
A. T.
Afaneh
,
G.
Schreckenbach
, and
F.
Wang
, “
Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations
,”
J. Phys. Chem. B
118
,
11271
11283
(
2014
).
28.
G.
Chillemi
,
G.
Mancini
,
N.
Sanna
,
V.
Barone
,
S.
Della Longa
,
M.
Benfatto
,
N. V.
Pavel
, and
P.
D’Angelo
, “
Evidence for sevenfold coordination in the first solvation shell of Hg(II) aqua ion
,”
J. Am. Chem. Soc.
129
,
5430
5436
(
2007
).
29.
P.
D’Angelo
,
V.
Barone
,
G.
Chillemi
,
N.
Sanna
,
W.
Meyer-Klaucke
, and
N. V.
Pavel
, “
Hydrogen and higher shell contributions in Zn2+, Ni2+, and Co2+ aqueous solutions: An X-ray absorption fine structure and molecular dynamics study
,”
J. Am. Chem. Soc.
124
,
1958
1967
(
2002
).
30.
G. W.
Neilson
,
J. E.
Enderby
, and
A. D.
Buckingham
, “
The structure of an aqueous solution of nickel chloride
,”
Proc. R. Soc. London, Ser. A
390
,
353
371
(
1997
).
31.
I.
Persson
,
K.
Lyczko
,
D.
Lundberg
,
L.
Eriksson
, and
A.
Płaczek
, “
Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state
,”
Inorg. Chem.
50
,
1058
1072
(
2011
).
32.
J. R.
Bargar
,
G. E.
Brown
, and
G. A.
Parks
, “
Surface complexation of Pb(II) at oxide-water interfaces: I. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides
,”
Geochim. Cosmochim. Acta
61
,
2617
2637
(
1997
).
33.
T. J.
Swift
and
W. G.
Sayre
, “
Determination of hydration numbers of cations in aqueous solution by means of proton NMR
,”
J. Chem. Phys.
44
,
3567
3574
(
1966
).
34.
V.
Migliorati
,
G.
Mancini
,
S.
Tatoli
,
A.
Zitolo
,
A.
Filipponi
,
S.
De Panfilis
,
A.
Di Cicco
, and
P.
D’Angelo
, “
Hydration properties of the Zn2+ ion in water at high pressure
,”
Inorg. Chem.
52
,
1141
1150
(
2013
).
35.
T.
Dudev
,
C.
Grauffel
, and
C.
Lim
, “
How Pb2+ binds and modulates properties of Ca2+ – signaling proteins
,”
Inorg. Chem.
57
,
14798
14809
(
2018
).
36.
R. A.
Bernhoft
, “
Mercury toxicity and treatment: A review of the literature
,”
J. Environ. Public Health
2012
,
e460508
.
37.
Y.
Marcus
, “
Thermodynamics of solvation of ions. Part 6.—The standard partial molar volumes of aqueous ions at 298.15 K
,”
J. Chem. Soc., Faraday Trans.
89
,
713
718
(
1993
).
38.
A. D.
Mackerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
III
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
1415
(
2004
).
39.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
40.
S.
Chatterjee
,
P. G.
Debenedetti
,
F. H.
Stillinger
, and
R. M.
Lynden-Bell
, “
A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models
,”
J. Chem. Phys.
128
,
124511
(
2008
).
41.
P.
Li
,
B. P.
Roberts
,
D. K.
Chakravorty
, and
K. M. J.
Merz
, “
Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent
,”
J. Chem. Theory Comput.
9
,
2733
2748
(
2013
).
42.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
,
43
56
(
1995
).
43.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
45.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
46.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
47.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
48.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
49.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
50.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
51.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
52.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
1993
,
799
805
.
53.
R. D.
Shannon
, “
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
,”
Acta Crystallogr., Sect. A: Found. Adv.
32
,
751
767
(
1976
).
54.
TURBOMOLE V7.6 2022: A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH,
1989–2007
, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
55.
A.
Klamt
, “
Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena
,”
J. Phys. Chem.
99
,
2224
2235
(
1995
).
56.
A.
Klamt
,
V.
Jonas
,
T.
Bürger
, and
J. C. W.
Lohrenz
, “
Refinement and parametrization of COSMO-RS
,”
J. Phys. Chem. A
102
,
5074
5085
(
1998
).
57.
F.
Eckert
and
A.
Klamt
, “
Fast solvent screening via quantum chemistry: COSMO-RS approach
,”
AIChE J.
48
,
369
385
(
2002
).
58.
A.
Klamt
and
M.
Diedenhofen
, “
A refined cavity construction algorithm for the conductor-like screening model
,”
J. Comput. Chem.
39
,
1648
1655
(
2018
).
59.
V.
Kostal
,
P. E.
Mason
,
H.
Martinez-Seara
, and
P.
Jungwirth
, “
Common cations are not polarizable: Effects of dispersion correction on hydration structures from ab initio molecular dynamics
,”
J. Phys. Chem. Lett.
14
,
4403
4408
(
2023
).
60.
H.
Ohtaki
and
M.
Maeda
, “
An X-ray diffraction study of the structure of hydrated copper(II) ion in a copper(II) perchlorate solution
,”
Bull. Chem. Soc. Jpn.
47
,
2197
2199
(
1974
).
61.
M.
Magini
, “
Coordination of copper(II). Evidence of the Jahn–Teller effect in aqueous perchlorate solutions
,”
Inorg. Chem.
21
,
1535
1538
(
1982
).
62.
J.
Garcia
,
M.
Benfatto
,
C. R.
Natoli
,
A.
Bianconi
,
A.
Fontaine
, and
H.
Tolentino
, “
The quantitative Jahn-Teller distortion of the Cu2+ site in aqueous solution by XANES spectroscopy
,”
Chem. Phys.
132
,
295
302
(
1989
).
63.
G.
Licheri
,
A.
Musinu
,
G.
Paschina
,
G.
Piccaluga
,
G.
Pinna
, and
A. F.
Sedda
, “
Coordination of Cu(II) in Cu(NO3)2 aqueous solutions
,”
J. Chem. Phys.
80
,
5308
5311
(
1984
).
64.
Y.
Tajiri
and
H.
Wakita
, “
An EXAFS investigation of the coordination structure of copper(II) ions in aqueous Cu(ClO4)2 and methanolic CuCl2 solutions
,”
Bull. Chem. Soc. Jpn.
59
,
2285
2291
(
1986
).
65.
T. K.
Sham
,
J. B.
Hastings
, and
M. L.
Perlman
, “
Application of the EXAFS method to Jahn—Teller ions: Static and dynamic behavior of Cu(H2O)62+ and Ci(H2O)2+6 in aqueous solution
,”
Chem. Phys. Lett.
83
,
391
396
(
1981
).
66.
B.
Beagley
,
A.
Eriksson
,
J.
Lindgren
,
I.
Persson
,
L. G. M.
Pettersson
,
M.
Sandstrom
,
U.
Wahlgren
, and
E. W.
White
, “
A computational and experimental study on the Jahn-Teller effect in the hydrated copper (II) ion. Comparisons with hydrated nickel (II) ions in aqueous solution and solid Tutton’s salts
,”
J. Phys.: Condens. Matter
1
,
2395
(
1989
).
67.
S. E.
Okan
and
P. S.
Salmon
, “
The Jahn-Teller effect in solutions of flexible molecules: A neutron diffraction study on the structure of a Cu2+ solution in ethylene glycol
,”
Mol. Phys.
85
,
981
998
(
1995
).
68.
J. V.
Burda
,
M.
Pavelka
, and
M.
Šimánek
, “
Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study
,”
J. Mol. Struct.: THEOCHEM
683
,
183
193
(
2004
).
69.
X.
Liu
,
X.
Lu
,
E.
Jan Meijer
, and
R.
Wang
, “
Hydration mechanisms of Cu2+: Tetra-penta- or hexa-coordinated?
,”
Phys. Chem. Chem. Phys.
12
,
10801
10804
(
2010
).
70.
M.
Benfatto
,
P.
D’Angelo
,
S.
Della Longa
, and
N. V.
Pavel
, “
Evidence of distorted fivefold coordination of the Cu2+ a.u. ion from an x-ray-absorption spectroscopy quantitative analysis
,”
Phys. Rev. B
65
,
174205
(
2002
).
71.
P.
Frank
,
M.
Benfatto
,
R. K.
Szilagyi
,
P.
D’Angelo
,
S.
Della Longa
, and
K. O.
Hodgson
, “
The solution structure of [Cu(aq)]2+ and its implications for rack-induced bonding in blue copper protein active sites
,”
Inorg. Chem.
44
,
1922
1933
(
2005
).
72.
V.
Patel
,
S.-L.
Dahlroth
,
V.
Rajakannan
,
H. T.
Ho
,
T.
Cornvik
, and
P.
Nordlund
, “
Structure of the C-terminal domain of the multifunctional ICP27 protein from herpes simplex virus 1
,”
J. Virol.
89
,
8828
8839
(
2015
).
73.
M. C. F.
Wander
and
A. E.
Clark
, “
Hydration properties of aqueous Pb(II) ion
,”
Inorg. Chem.
47
,
8233
8241
(
2008
).
74.
C.
Gourlaouen
,
H.
Gérard
, and
O.
Parisel
, “
Exploring the hydration of Pb2+: Ab initio studies and first-principles molecular dynamics
,”
Chem. - Eur. J.
12
,
5024
5032
(
2006
).
75.
T. S.
Hofer
and
B. M.
Rode
, “
The solvation structure of Pb(II) in dilute aqueous solution: An ab initio quantum mechanical/molecular mechanical molecular dynamics approach
,”
J. Chem. Phys.
121
,
6406
6411
(
2004
).
76.
A. M.
Kuznetsov
,
A. N.
Masliy
, and
G. V.
Korshin
, “
Quantum-chemical simulations of the hydration of Pb(II) ion: Structure, hydration energies, and pKa1 value
,”
J. Mol. Model.
24
,
193
(
2018
).

Supplementary Material

You do not currently have access to this content.