We construct correlation-consistent effective core potentials (ccECPs) for a selected set of heavy atoms and f elements that are currently of significant interest in materials and chemical applications, including Y, Zr, Nb, Rh, Ta, Re, Pt, Gd, and Tb. As is customary, ccECPs consist of spin–orbit (SO) averaged relativistic effective potential (AREP) and effective SO terms. For the AREP part, our constructions are carried out within a relativistic coupled-cluster framework while also taking into account objective function one-particle characteristics for improved convergence in optimizations. The transferability is adjusted using binding curves of hydride and oxide molecules. We address the difficulties encountered with f elements, such as the presence of large cores and multiple near-degeneracies of excited levels. For these elements, we construct ccECPs with core–valence partitioning that includes 4f subshell in the valence space. The developed ccECPs achieve an excellent balance between accuracy, size of the valence space, and transferability and are also suitable to be used in plane wave codes with reasonable energy cutoffs.

1.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials for correlated calculations
,”
J. Chem. Phys.
147
(
22
),
224106
(
2017
).
2.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 2nd row elements
,”
J. Chem. Phys.
149
(
10
),
104108
(
2018
).
3.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 3d transition metal series
,”
J. Chem. Phys.
149
(
13
),
134108
(
2018
).
4.
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions
,”
J. Chem. Phys.
151
(
14
),
144110
(
2019
).
5.
G.
Wang
,
B.
Kincaid
,
H.
Zhou
,
A.
Annaberdiyev
,
M. C.
Bennett
,
J. T.
Krogel
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated and spin–orbit calculations: Selected heavy elements
,”
J. Chem. Phys.
157
(
5
),
054101
(
2022
).
6.
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
G.
Wang
, and
L.
Mitas
, “
Accurate atomic correlation and total energies for correlation consistent effective core potentials
,”
J. Chem. Theory Comput.
16
(
3
),
1482
1502
(
2020
).
7.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M. C.
Bennett
, and
L.
Mitas
, “
Cohesion and excitations of diamond-structure silicon by quantum Monte Carlo: Benchmarks and control of systematic biases
,”
Phys. Rev. B
103
(
20
),
205206
(
2021
).
8.
A.
Annaberdiyev
,
C. A.
Melton
,
G.
Wang
, and
L.
Mitas
, “
Electronic structure of α–RuCl3 by fixed-node and fixed-phase diffusion Monte Carlo methods
,”
Phys. Rev. B
106
(
7
),
075127
(
2022
).
9.
C. A.
Melton
and
L.
Mitas
, “
Many-body electronic structure of LaScO3 by real-space quantum Monte Carlo
,”
Phys. Rev. B
102
(
4
),
045103
(
2020
).
10.
X.
Wang
and
T. C.
Berkelbach
, “
Absorption spectra of solids from periodic equation-of-motion coupled-cluster theory
,”
J. Chem. Theory Comput.
17
,
6387
(
2021
).
11.
X.
Li
,
C.
Fan
,
W.
Ren
, and
J.
Chen
, “
Fermionic neural network with effective core potential
,”
Phys. Rev. Res.
4
(
1
),
013021
(
2022
).
12.
D.
Wines
,
K.
Saritas
, and
C.
Ataca
, “
A first-principles quantum Monte Carlo study of two-dimensional (2D) GaSe
,”
J. Chem. Phys.
153
(
15
),
154704
(
2020
).
13.
K.
Oqmhula
,
K.
Hongo
,
R.
Maezono
, and
T.
Ichibha
, “
Ab initio evaluation of complexation energies for cyclodextrin-drug inclusion complexes
,”
ACS Omega
5
(
31
),
19371
19376
(
2020
).
14.
L.
Otis
,
I. M.
Craig
, and
E.
Neuscamman
, “
A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states
,”
J. Chem. Phys.
153
(
23
),
234105
(
2020
).
15.
T.
Wang
,
X.
Zhou
, and
F.
Wang
, “
Performance of the diffusion quantum Monte Carlo method with a single-Slater-Jastrow trial wavefunction using natural orbitals and density functional theory orbitals on atomization energies of the Gaussian-2 set
,”
J. Phys. Chem. A
123
(
17
),
3809
3817
(
2019
).
16.
X.
Zhou
,
H.
Zhao
,
T.
Wang
, and
F.
Wang
, “
Diffusion quantum Monte Carlo calculations with a recent generation of effective core potentials for ionization potentials and electron affinities
,”
Phys. Rev. A
100
(
6
),
062502
(
2019
).
17.
R.
Tyagi
,
A.
Zen
, and
V. K.
Voora
, “
Quantifying the impact of halogenation on intermolecular interactions and binding modes of aromatic molecules
,”
J. Phys. Chem. A
127
(
28
),
5823
5832
(
2023
).
18.
H.
Shin
,
J. T.
Krogel
,
K.
Gasperich
,
P. R. C.
Kent
,
A.
Benali
, and
O.
Heinonen
, “
Optimized structure and electronic band gap of monolayer GeSe from quantum Monte Carlo methods
,”
Phys. Rev. Mater.
5
(
2
),
024002
(
2021
).
19.
A. N.
Hill
,
A. J. H. M.
Meijer
, and
J. G.
Hill
, “
Correlation consistent basis sets and core polarization potentials for Al–Ar with ccECP pseudopotentials
,”
J. Phys. Chem. A
126
(
34
),
5853
5863
(
2022
).
20.
T.
Goldzak
,
X.
Wang
,
H.-Z.
Ye
, and
T. C.
Berkelbach
, “
Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2
,”
J. Chem. Phys.
157
(
17
),
174112
(
2022
).
21.
A. H.
Denawi
,
F.
Bruneval
,
M.
Torrent
, and
M.
Rodríguez-Mayorga
, “
GW density matrix for estimation of self-consistent GW total energies in solids
,”
Phys. Rev. B
108
(
12
), 125107 (
2023
).
22.
X.
Huang
,
H.
Zhang
, and
X.-L.
Cheng
, “
Bandgaps in free-standing monolayer TiO2: Ab initio diffusion quantum Monte Carlo study
,”
Int. J. Quantum Chem.
121
(
12
),
e26643
(
2021
).
23.
B.
Kincaid
,
G.
Wang
,
H.
Zhou
, and
L.
Mitas
, “
Correlation consistent effective core potentials for late 3d transition metals adapted for plane wave calculations
,”
J. Chem. Phys.
157
(
17
),
174307
(
2022
).
24.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Energy-adjusted ab initio pseudopotentials for the rare earth elements
,”
J. Chem. Phys.
90
(
3
),
1730
1734
(
1989
).
25.
M.
Dolg
and
H.
Stoll
, “
Pseudopotential study of the rare earth monohydrides, monoxides and monofluorides
,”
Theor. Chim. Acta
75
(
5
),
369
387
(
1989
).
26.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds
,”
Theor. Chim. Acta
85
(
6
),
441
450
(
1993
).
27.
J. K.
Gibson
, “
Role of atomic electronics in f-element bond formation: Bond energies of lanthanide and actinide oxide molecules
,”
J. Phys. Chem. A
107
(
39
),
7891
7899
(
2003
).
28.
M.
Hülsen
,
A.
Weigand
, and
M.
Dolg
, “
Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements
,”
Theor. Chem. Acc.
122
(
1-2
),
23
29
(
2009
).
29.
J.-B.
Lu
,
D. C.
Cantu
,
M.-T.
Nguyen
,
J.
Li
,
V.-A.
Glezakou
, and
R.
Rousseau
, “
Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments
,”
J. Chem. Theory Comput.
15
(
11
),
5987
5997
(
2019
).
30.
J.-B.
Lu
,
X.-L.
Jiang
,
H.-S.
Hu
, and
J.
Li
, “
Norm-conserving 4f-in-Core pseudopotentials and basis sets optimized for trivalent lanthanides (Ln = Ce–Lu)
,”
J. Chem. Theory Comput.
19
,
82
(
2022
).
31.
C. W.
Bauschlicher
, “
The reliability of the small-core lanthanide effective core potentials
,”
Theor. Chem. Acc.
141
(
3
),
11
(
2022
).
32.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
(
1
),
33
(
2001
).
33.
M.
Lesiuk
, “
Implementation of the coupled-cluster method with single, double, and triple excitations using tensor decompositions
,”
J. Chem. Theory Comput.
16
(
1
),
453
467
(
2020
).
34.
A.
Annaberdiyev
,
S.
Mandal
,
L.
Mitas
,
J. T.
Krogel
, and
P.
Ganesh
, “
The role of electron correlations in the electronic structure of putative Chern magnet TbMn6Sn6
,”
npj Quantum Mater.
8
(
1
),
50
(
2023
).
35.
T.
Leininger
,
A.
Berning
,
A.
Nicklass
,
H.
Stoll
,
H.-J.
Werner
, and
H.-J.
Flad
, “
Spin-orbit interaction in heavy group 13 atoms and TlAr
,”
Chem. Phys.
217
(
1
),
19
27
(
1997
).
36.
H.
Stoll
,
B.
Metz
, and
M.
Dolg
, “
Relativistic energy-consistent pseudopotentials—Recent developments
,”
J. Comput. Chem.
23
(
8
),
767
778
(
2002
).
37.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
, “
Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations
,”
J. Chem. Phys.
129
(
16
),
164115
(
2008
).
38.
W. C.
Ermler
,
Y. S.
Lee
,
P. A.
Christiansen
, and
K. S.
Pitzer
, “
Ab initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions
,”
Chem. Phys. Lett.
81
(
1
),
70
74
(
1981
).
39.
Y. S.
Lee
,
W. C.
Ermler
, and
K. S.
Pitzer
, “
Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms
,”
J. Chem. Phys.
67
(
12
),
005861
5876
(
2008
).
40.
P.
Spellucci
, Donlp2 nonlinear optimization code,
2009
.
41.
D.
Andrae
,
U.
Haussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Energy-adjusted ab initio pseudopotentials for the second and third row transition elements
,”
Theor. Chim. Acta
77
(
2
),
123
141
(
1990
).
42.
K. A.
Peterson
,
D.
Figgen
,
M.
Dolg
, and
H.
Stoll
, “
Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd
,”
J. Chem. Phys.
126
(
12
),
124101
(
2007
).
43.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
, “
Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt
,”
J. Chem. Phys.
130
(
16
),
164108
(
2009
).
44.
L. A.
Lajohn
,
P. A.
Christiansen
,
R. B.
Ross
,
T.
Atashroo
, and
W. C.
Ermler
, “
Ab initio relativistic effective potentials with spin–orbit operators. III: Rb through Xe
,”
J. Chem. Phys.
87
(
5
),
2812
2824
(
1987
).
45.
R. B.
Ross
,
J. M.
Powers
,
T.
Atashroo
,
W. C.
Ermler
,
L. A.
Lajohn
, and
P. A.
Christiansen
, “
Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn
,”
J. Chem. Phys.
93
(
9
),
6654
6670
(
1990
).
46.
W. J.
Stevens
,
M.
Krauss
,
H.
Basch
, and
P. G.
Jasien
, “
Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-fourth-and fifth-row atoms
,”
Can. J. Chem.
70
(
2
),
612
630
(
1992
).
47.
T. R.
Cundari
and
W. J.
Stevens
, “
Effective core potential methods for the lanthanides
,”
J. Chem. Phys.
98
(
7
),
5555
5565
(
1993
).
48.
W. R.
Wadt
and
P. J.
Hay
, “
Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
,”
J. Chem. Phys.
82
(
1
),
284
298
(
1985
).
49.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
, “
Energy-adjusted ab initio pseudopotentials for the first row transition elements
,”
J. Chem. Phys.
86
(
2
),
866
872
(
1987
).
50.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
(
3
),
1993
2006
(
1991
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
52.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.10), [Online], https://physics.nist.gov/asd,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2022
.
53.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G.
Kin-Lic Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
54.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian˜16 Revision C.01
,
Gaussian Inc.
,
Wallingford CT
,
2016
.
55.
TURBOMOLE V7.2 2017
, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
56.
A.
Erba
,
J. K.
Desmarais
,
S.
Casassa
,
B.
Civalleri
,
L.
Donà
,
I. J.
Bush
,
B.
Searle
,
L.
Maschio
,
L.
Edith-Daga
,
A.
Cossard
,
C.
Ribaldone
,
E.
Ascrizzi
,
N. L.
Marana
,
J.-P.
Flament
, and
B.
Kirtman
, “
CRYSTAL23: A program for computational solid state physics and chemistry
,”
J. Chem. Theory Comput.
19
,
6891
(
2023
).
57.
R.
Dovesi
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I.
Bush
,
P.
D’Arco
,
Y.
Noël
,
M.
Rérat
,
P.
Carbonnière
,
M.
Causà
,
S.
Salustro
,
V.
Lacivita
,
B.
Kirtman
,
A. M.
Ferrari
,
F. S.
Gentile
,
J.
Baima
,
M.
Ferrero
,
R.
Demichelis
, and
M.
De La Pierre
, “
The CRYSTAL code, 1976–2020 and beyond, a long story
,”
J. Chem. Phys.
152
(
20
),
204111
(
2020
).
58.
E. L.
Shirley
,
L.
Mitáš
, and
R. M.
Martin
, “
Core-valence partitioning and quasiparticle pseudopotentials
,”
Phys. Rev. B
44
(
7
),
3395
3398
(
1991
).
59.
Pseudopotential Library: A community website for pseudopotentials/effective core potentials developed for high accuracy correlated many-body methods such as quantum Monte Carlo and quantum chemistry. https://pseudopotentiallibrary.org (accessed 02 August 2023).
60.
B.
Blaiszik
,
K.
Chard
,
J.
Pruyne
,
R.
Ananthakrishnan
,
S.
Tuecke
, and
I.
Foster
, “
The materials data facility: Data services to advance materials science research
,”
JOM
68
(
8
),
2045
2052
(
2016
).
61.
B.
Blaiszik
,
L.
Ward
,
M.
Schwarting
,
J.
Gaff
,
R.
Chard
,
D.
Pike
,
K.
Chard
, and
I.
Foster
, “
A data ecosystem to support machine learning in materials science
,”
MRS Commun.
9
(
4
),
1125
1133
(
2019
).
62.
H.
Zhou
,
B. E.
Kincaid
,
G.
Wang
,
A.
Annaberdiyev
,
P.
Ganesh
, and
L.
Mitas
, Dataset for “A new generation of effective core potentials: selected lanthanides and heavy elements”; https://doi.org/10.18126/HFZZ-ULL5,
2024
.

Supplementary Material

You do not currently have access to this content.