Biased and accelerated molecular simulations (BAMS) are widely used tools to observe relevant molecular phenomena occurring on time scales inaccessible to standard molecular dynamics, but evaluation of the physical time scales involved in the processes is not directly possible from them. For this reason, the problem of recovering dynamics from such kinds of simulations is the object of very active research due to the relevant theoretical and practical implications of dynamics on the properties of both natural and synthetic molecular systems. In a recent paper [A. Rapallo et al., J. Comput. Chem. 42, 586–599 (2021)], it has been shown how the coupling of BAMS (which destroys the dynamics but allows to calculate average properties) with Extended Diffusion Theory (EDT) (which requires input appropriate equilibrium averages calculated over the BAMS trajectories) allows to effectively use the Smoluchowski equation to calculate the orientational time correlation function of the head–tail unit vector defined over a peptide in water solution. Orientational relaxation of this vector is the result of the coupling of internal molecular motions with overall molecular rotation, and it was very well described by correlation functions expressed in terms of weighted sums of suitable time-exponentially decaying functions, in agreement with a Brownian diffusive regime. However, situations occur where exponentially decaying functions are no longer appropriate to capture the actual dynamical behavior, which exhibits persistent long time correlations, compatible with the so called subdiffusive regimes. In this paper, a generalization of EDT will be given, exploiting a fractional Smoluchowski equation (FEDT) to capture the non-exponential character observed in the relaxation of intramolecular distances and molecular radius of gyration, whose dynamics depend on internal molecular motions only. The calculation methods, proper to EDT, are adapted to implement the generalization of the theory, and the resulting algorithm confirms FEDT as a tool of practical value in recovering dynamics from BAMS, to be used in general situations, involving both regular and anomalous diffusion regimes.

1.
X. Y.
Chang
and
K. F.
Freed
,
J. Chem. Phys.
99
,
8016
8030
(
1993
).
2.
A.
Perico
,
R.
Pratolongo
,
K. F.
Freed
,
R. W.
Pastor
, and
A.
Szabo
,
J. Chem. Phys.
98
,
564
573
(
1993
).
3.
A.
Rapallo
,
R.
Gaspari
,
G.
Grasso
, and
A.
Danani
,
J. Comput. Chem.
42
,
586
599
(
2021
).
4.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Lett. B
267
,
249
253
(
1991
).
5.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
3911
(
1997
).
6.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
151
(
1999
).
7.
M. R.
Sørensen
and
A. F.
Voter
,
J. Chem. Phys.
112
,
9599
9606
(
2000
).
9.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
10.
D.
Hamelberg
,
J.
Mongan
, and
J.
McCammon
,
J. Chem. Phys.
120
,
11919
11929
(
2004
).
11.
L.
Maragliano
and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
426
,
168
175
(
2006
).
12.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
13.
J.
Hénin
,
G.
Fiorin
,
C.
Chipot
, and
M.
Klein
,
J. Chem. Theory Comput.
6
,
35
47
(
2010
).
14.
Y.
Hu
,
W.
Hong
,
Y.
Shi
, and
H.
Liu
,
J. Chem. Theory Comput.
8
,
3777
3792
(
2012
).
15.
R. J.
Zamora
,
B. P.
Uberuaga
,
D.
Perez
, and
A. F.
Voter
,
Annu. Rev. Chem. Biomol. Eng.
7
,
87
110
(
2016
).
16.
A.
Nunes-Alves
,
D. B.
Kokh
, and
R. C.
Wade
,
Curr. Opin. Struct. Biol.
64
,
126
133
(
2020
).
17.
H. N.
Do
and
Y.
Miao
,
J. Phys. Chem. Lett.
14
,
4970
4982
(
2023
).
18.
A.
Perico
,
R.
La Ferla
, and
K. F.
Freed
,
J. Chem. Phys.
91
,
4387
4400
(
1989
).
19.
M.
Guenza
,
M.
Mormino
, and
A.
Perico
,
Macromolecules
24
,
6168
6174
(
1991
).
20.
M.
Guenza
and
A.
Perico
,
Macromolecules
25
,
5942
5949
(
1992
).
21.
W. H.
Tang
,
X. Y.
Chang
, and
K. F.
Freed
,
J. Chem. Phys.
103
,
9492
9501
(
1995
).
22.
A.
Perico
and
R.
Pratolongo
,
Macromolecules
30
,
5958
5969
(
1997
).
23.
G.
La Penna
,
R.
Pratolongo
, and
A.
Perico
,
Macromolecules
32
,
506
513
(
1999
).
24.
K. S.
Kostov
and
K. F.
Freed
,
Biophys. J.
76
,
149
163
(
1999
).
25.
G.
La Penna
,
P.
Carbone
,
R.
Carpentiero
,
A.
Rapallo
, and
A.
Perico
,
J. Chem. Phys.
114
,
1876
1886
(
2001
).
26.
R.
Gaspari
and
A.
Rapallo
,
J. Chem. Phys.
128
,
244109
(
2008
).
27.
P. J.
Hsu
,
S. K.
Lai
, and
A.
Rapallo
,
J. Chem. Phys.
140
,
104910
(
2014
).
28.
Y.
Hu
,
K.
Kostov
,
A.
Perico
,
S.
Smithline
, and
K. F.
Freed
,
J. Chem. Phys.
103
,
9091
9100
(
1995
).
29.
M.-y.
Shen
and
K. F.
Freed
,
Biophys. J.
82
,
1791
1818
(
2002
).
30.
M.-y.
Shen
and
K. F.
Freed
,
J. Chem. Phys.
118
,
5143
5156
(
2003
).
31.
S.
Fausti
,
G.
La Penna
,
C.
Cuniberti
, and
A.
Perico
,
Biopolymers
50
,
613
629
(
1999
).
32.
G.
La Penna
,
S.
Fausti
,
A.
Perico
, and
J. A.
Ferretti
,
Biopolymers
54
,
89
103
(
2000
).
33.
S.
Fausti
,
G. L.
Penna
,
C.
Cuniberti
, and
A.
Perico
,
Mol. Simul.
24
,
307
324
(
2000
).
34.
G. L.
Penna
,
A.
Perico
, and
D.
Genest
,
J. Biomol. Struct. Dyn.
17
,
673
685
(
2000
).
35.
A.
Giachetti
,
G. L.
Penna
,
A.
Perico
, and
L.
Banci
,
Biophys. J.
87
,
498
512
(
2004
).
36.
I. E. T.
Iben
,
D.
Braunstein
,
W.
Doster
,
H.
Frauenfelder
,
M. K.
Hong
,
J. B.
Johnson
,
S.
Luck
,
P.
Ormos
,
A.
Schulte
,
P. J.
Steinbach
,
A. H.
Xie
, and
R. D.
Young
,
Phys. Rev. Lett.
62
,
1916
1919
(
1989
).
37.
H.
Yang
,
G.
Luo
,
P.
Karnchanaphanurach
,
T.-M.
Louie
,
I.
Rech
,
S.
Cova
,
L.
Xun
, and
S.
Xie
,
Science
302
,
262
266
(
2003
).
38.
W.
Min
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Phys. Rev. Lett.
94
,
198302
(
2005
).
39.
A. N.
Hassani
,
L.
Haris
,
M.
Appel
,
T.
Seydel
,
A. M.
Stadler
, and
G. R.
Kneller
,
J. Chem. Phys.
156
,
025102
(
2022
).
40.
E. M.
Bertin
and
J.-P.
Bouchaud
,
Phys. Rev. E
67
,
026128
(
2003
).
41.
G.
Luo
,
I.
Andricioaei
,
X. S.
Xie
, and
M.
Karplus
,
J. Phys. Chem. B
110
,
9363
(
2006
).
42.
T.
Neusius
,
I.
Daidone
,
I. M.
Sokolov
, and
J. C.
Smith
,
Phys. Rev. Lett.
100
,
188103
(
2008
).
43.
F.
Rao
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
9152
9157
(
2010
).
44.
Y.
Meroz
,
V.
Ovchinnikov
, and
M.
Karplus
,
Phys. Rev. E
95
,
062403
(
2017
).
45.
T.
Neusius
,
I.
Daidone
,
I. M.
Sokolov
, and
J. C.
Smith
,
Phys. Rev. E
83
,
021902
(
2011
).
46.
C.
Xia
,
X.
He
,
J.
Wang
, and
W.
Wang
,
Phys. Rev. E
102
,
062424
(
2020
).
47.
W. H.
Tang
,
K. S.
Kostov
, and
K. F.
Freed
,
J. Chem. Phys.
108
,
8736
8742
(
1998
).
48.
I.
Teraoka
,
Polymer Solutions
(
John Wiley & Sons, Inc.
,
New York
,
2002
).
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
San Diego
,
1996
).
50.
J. D.
Chodera
,
P. J.
Elms
,
W. C.
Swope
,
J.-H.
Prinz
,
S.
Marqusee
,
C.
Bustamante
,
F.
Noé
, and
V. S.
Pande
, arXiv:1108.2304 (
2011
).
51.
E.
Lerner
,
T.
Cordes
,
A.
Ingargiola
,
Y.
Alhadid
,
S.
Chung
,
X.
Michalet
, and
S.
Weiss
,
Science
359
,
1
12
(
2018
).
52.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
104
(
2004
).
53.
N.-V.
Buchete
and
G.
Hummer
,
Phys. Rev. E
77
,
030902(R
(
2008
).
54.
P. R. L.
Markwick
and
J. A.
McCammon
,
Phys. Chem. Chem. Phys.
13
,
20053
20065
(
2011
).
55.
J. D.
Chodera
,
W. C.
Swope
,
F.
Noé
,
J.-H.
Prinz
,
M. R.
Shirts
, and
V. S.
Pande
,
J. Chem. Phys.
134
,
244107
(
2011
).
56.
J.-H.
Prinz
,
J. D.
Chodera
,
V. S.
Pande
,
W. C.
Swope
,
J. C.
Smith
, and
F.
Noé
,
J. Chem. Phys.
134
,
244108
(
2011
).
57.
P.
Tiwary
and
M.
Parrinello
,
Phys. Rev. Lett.
111
,
230602
(
2013
).
58.
S. A.
Paz
and
E. P. M.
Leiva
,
J. Chem. Theory Comput.
11
,
1725
1734
(
2015
).
59.
J. K.
Weber
and
V. S.
Pande
,
J. Chem. Theory Comput.
11
,
2412
2420
(
2015
).
60.
W. H.
Paul
,
C.
Wehmeyer
, and
F.
Noé
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
(
2016
).
61.
I.
Teo
,
C. G.
Mayne
,
K.
Schulten
, and
T.
Lelievre
,
J. Chem. Theory Comput.
12
,
2983
2989
(
2016
).
62.
L. S.
Stelzl
and
G.
Hummer
,
J. Chem. Theory Comput.
13
,
3927
3935
(
2017
).
63.
A.
Chattopadhyay
,
M.
Zheng
,
M. P.
Waller
, and
U. D.
Priyakumar
,
J. Chem. Theory Comput.
14
,
3365
3380
(
2018
).
64.
S.-H.
Ahn
,
A. A.
Ojha
,
R. E.
Amaro
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
17
,
7938
7951
(
2021
).
65.
R.
Hilfer
, “
Threefold introduction to fractional derivatives
,”
Anomalous Transport: Foundation and Applications
(
Wiley VCH
,
Weinheim
,
2008
).
66.
R.
Gorenflo
and
F.
Mainardi
, “
Fractional calculus: Integral and differential equations of fractional order
,” in
Fractals and Fractional Calculus in Continuum Mechanics
, edited by
A.
Carpinteri
and
F.
Mainardi
(
Springer Verlag
,
Wien and New York
,
1997
).
67.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
New York
,
1999
).
68.
R.
Metzler
,
E.
Barkai
, and
J.
Klafter
,
Phys. Rev. Lett.
82
,
3563
3567
(
1999
).
69.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
77
(
2000
).
70.
F.
Mainardi
,
Y.
Luchko
, and
G.
Pagnini
,
Fractional Calculus Appl. Anal.
4
,
153
192
(
2001
).
71.
R.
Metzler
and
T. F.
Nonnenmacher
,
Chem. Phys.
284
,
67
90
(
2002
).
72.
R.
Metzler
and
J.
Klafter
,
J. Phys. A: Math. Gen.
37
,
R161
R208
(
2004
).
73.
G. R.
Kneller
and
K.
Hinsen
,
J. Chem. Phys.
121
,
10278
10283
(
2004
).
74.
G. R.
Kneller
,
Phys. Chem. Chem. Phys.
7
,
2641
2655
(
2005
).
75.
T.
Sandev
,
A.
Chechkin
,
H.
Kantz
, and
R.
Metzler
,
Fractional Calculus Appl. Anal.
18
,
1006
1038
(
2015
).
76.
W.
Rui
,
X.
Yang
, and
F.
Chen
,
Physica A
595
,
127068
(
2022
).
77.
G. M.
Mittag-Leffler
,
C. R. Acad. Sci. Paris
137
,
554
558
(
1903
).
78.
R.
Gorenflo
,
A. A.
Kilbas
,
F.
Mainardi
, and
S. V.
Rogosin
,
Mittag-Leffler Functions. Related Topics and Applications
(
Springer
,
New York
,
2014
).
79.
M. A.
Gonzáles
and
J. L. F.
Abscal
,
J. Chem. Phys.
135
,
224516
(
2011
).
80.
D. H.
de Jong
,
G.
Singh
,
W. F. D.
Bennett
,
C.
Arnarez
,
T. A.
Wassenaar
,
L. V.
Schäfer
,
X.
Periole
,
D. P.
Tieleman
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
9
,
687
697
(
2013
).
81.
R.
Bradley
and
R.
Radhakrishnan
,
Polymers
5
,
890
936
(
2013
).
83.
R. B.
Jones
and
P. N.
Pusey
,
Annu. Rev. Phys. Chem.
42
,
137
169
(
1991
).
84.
B. U.
Felderhof
and
R. B.
Jones
,
Phys. Rev. E
48
,
1084
1090
(
1993
).
85.
V.
Degiorgio
,
R.
Piazza
, and
R. B.
Jones
,
Phys. Rev. E
52
,
2707
2717
(
1995
).
86.
E.
Wajnryb
,
K. A.
Mizerski
,
P. J.
Zuk
, and
P.
Szymczak
,
J. Fluid Mech.
731
,
R3 1
12
(
2013
).
87.
P. J.
Zuk
,
E.
Wajnryb
,
K. A.
Mizerski
, and
P.
Szymczak
,
J. Fluid Mech.
741
,
R5 1
13
(
2014
).
88.
K. B.
Oldham
and
J.
Spainer
,
The Fractional Calculus
(
Academic Press
,
New York
,
1974
).
90.
F.
Mainardi
and
R.
Gorenflo
,
Fractional Calculus Appl. Anal.
10
,
269
308
(
2007
).
91.
G. M.
Zaslavsky
, “
Fractional kinetics of Hamiltonian chaotic systems
,”
Applications of Fractional Calculus in Physics
(
World Scientific
,
Singapore
,
2000
).
92.
M. F.
Shlesinger
, and
B. D.
Hughes
,
Physica
109A
,
597
608
(
1981
).
93.
B. D.
Hughes
,
M. F.
Shlesinger
, and
E. W.
Montroll
,
Proc. Natl. Acad. Sci. U. S. A.
78
,
3287
3291
(
1981
).
94.
M.
Buscaglia
,
B.
Schuler
,
L. J.
Lapidus
,
W. A.
Eaton
, and
J.
Hofrichter
,
J. Mol. Biol.
332
,
9
12
(
2003
).
95.
C.-Y.
Huang
,
Z.
Getahun
,
Y.
Zhu
,
J. W.
Klemke
,
W. F.
DeGrado
, and
F.
Gai
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
2788
2793
(
2002
).
96.
T.
Wang
,
Y.
Zhu
,
Z.
Getahun
,
D.
Du
,
C.-Y.
Huang
,
W. F.
DeGrado
, and
F.
Gai
,
J. Phys. Chem. B
108
,
15301
15310
(
2004
).
97.
J.
Bredenbeck
,
J.
Helbing
,
J. R.
Kumita
,
G. A.
Woolley
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
2379
2384
(
2005
).
98.
P.
Hamm
,
J.
Helbing
, and
J.
Bredenbeck
,
Chem. Phys.
323
,
54
65
(
2006
).
99.
J. A.
Ihalainen
,
J.
Bredenbeck
,
R.
Pfister
,
J.
Helbing
,
L.
Chi
,
I. H. M.
van Stokkum
,
G. A.
Woolley
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
5383
5388
(
2007
).
100.
C. P.
Jaroniec
,
C. E.
MacPhee
,
N. S.
Astrof
,
C. M.
Dobson
, and
R. G.
Griffin
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
16748
16753
(
2002
).
101.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
1666
(
1988
).
102.
E.
Lindahl
,
B.
Hess
, and
D.
Van Der Spoel
,
J. Mol. Model.
7
,
306
317
(
2001
).
103.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
1718
(
2005
).
104.
R. W.
Pastor
and
M.
Karplus
,
J. Phys. Chem.
92
,
2636
2641
(
1988
).
105.
R. M.
Venable
and
R. W.
Pastor
,
Biopolymers
27
,
1001
1014
(
1988
).
106.
J. L.
Pascual-Ahuir
and
E.
Silla
,
J. Comput. Chem.
11
,
1047
1060
(
1990
).
107.
M. F.
Sanner
,
A. J.
Olson
, and
J.-C.
Spehner
,
Biopolymers
38
,
305
320
(
1996
).
108.
J.
Ribeiro
,
C.
Rios-Vera
,
F.
Melo
, and
A.
Schüller
,
Bioinformatics
35
,
3499
3501
(
2019
).
109.
E.
Caballero-Manrique
,
J. K.
Bray
,
W. A.
Deutschman
,
F. W.
Dahlquist
, and
M. G.
Guenza
,
Biophys. J.
93
,
4128
4140
(
2007
).
110.
J.
Copperman
and
M. G.
Guenza
,
J. Chem. Phys.
143
,
243131
(
2015
).
112.
J. A.
Rackers
,
Z.
Wang
,
C.
Lu
,
M. L.
Laury
,
L.
Lagardère
,
M. J.
Schnieders
,
J.-P.
Piquemal
,
P.
Ren
, and
J. W.
Ponder
,
J. Chem. Theory Comput.
14
,
5273
5289
(
2018
).
114.
E.
Carlstein
,
Ann. Stat.
14
,
1171
1179
(
1986
).
115.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1999
), Vol.
1
.
116.
G. R.
Bowman
,
J. Comput. Chem.
37
,
558
566
(
2016
).
You do not currently have access to this content.