Golden nanoparticle dimers connected by conjugated molecular linkers 1,2-bis(2-pyridyl)ethylene are produced. The formation of stable dimers with 22 nm diameter nanoparticles is confirmed by transmission electron microphotography. The possibility of charge transfer through the linkers between the particles in the dimers is shown by the density functional theory calculations. In addition to localized plasmon resonance of solitary nanoparticles with a wavelength of 530 nm, the optical spectra exhibit a new intense absorption peak in the near-infrared range with a wavelength of ∼780 nm. The emergent absorption peak is attributed to the charge-transfer plasmon (CTP) mode; the spectra simulated within the CTP developed model agree with the experimental ones. This resonant absorption may be of interest to biomedical applications due to its position in the so-called transmission window of biological tissues. The in vitro heating of CTP dimer solution by a laser diode with a wavelength of 792 nm proved the efficiency of CTP dimers for achieving a temperature increase of ΔT = 6 °C, which is sufficient for hyperthermia treatment of malignant tumors. This indicates the possibility of using hyperthermia to treat malignant tumors using the material we synthesized.

1.
A.
Uddin
and
X.
Yang
, “
Surface plasmonic effects on organic solar cells
,”
J. Nanosci. Nanotechnol.
14
,
1099
1119
(
2014
).
2.
J.
Liu
,
H.
He
,
D.
Xiao
,
S.
Yin
,
W.
Ji
,
S.
Jiang
,
D.
Luo
,
B.
Wang
, and
Y.
Liu
, “
Recent advances of plasmonic nanoparticles and their applications
,”
Materials
11
,
1833
(
2018
).
3.
F.
Parveen
,
B.
Sannakki
,
M. V.
Mandke
, and
H. M.
Pathan
, “
Copper nanoparticles: Synthesis methods and its light harvesting performance
,”
Sol. Energy Mater. Sol. Cells
144
,
371
382
(
2016
).
4.
S.
Gwo
,
H.-Y.
Chen
,
M.-H.
Lin
,
L.
Sun
, and
X.
Li
, “
Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics
,”
Chem. Soc. Rev.
45
,
5672
5716
(
2016
).
5.
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
X.
Shi
, and
H.
Misawa
, “
Solid-state plasmonic solar cells
,”
Chem. Rev.
118
,
2955
2993
(
2018
).
6.
N.
Venugopal
,
V.
Gerasimov
,
A.
Ershov
,
S.
Karpov
, and
S.
Polyutov
, “
Titanium nitride as light trapping plasmonic material in silicon solar cell
,”
Opt. Mater.
72
,
397
402
(
2017
).
7.
M.
Valenti
,
M. P.
Jonsson
,
G.
Biskos
,
A.
Schmidt-Ott
, and
W. A.
Smith
, “
Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting
,”
J. Mater. Chem. A
4
,
17891
17912
(
2016
).
8.
S.
Linic
,
U.
Aslam
,
C.
Boerigter
, and
M.
Morabito
, “
Photochemical transformations on plasmonic metal nanoparticles
,”
Nat. Mater.
14
,
567
576
(
2015
).
9.
C.
Deeb
and
J.-L.
Pelouard
, “
Plasmon lasers: Coherent nanoscopic light sources
,”
Phys. Chem. Chem. Phys.
19
,
29731
29741
(
2017
).
10.
V.
Gerasimov
,
A.
Ershov
,
R.
Bikbaev
,
I.
Rasskazov
,
I.
Timofeev
,
S.
Polyutov
, and
S.
Karpov
, “
Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal
,”
J. Quant. Spectrosc. Radiat. Transfer
224
,
303
308
(
2019
).
11.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
V. S.
Gerasimov
,
A. E.
Ershov
,
S. P.
Polyutov
, and
S. V.
Karpov
, “
Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths
,”
Appl. Phys. Lett.
111
,
123107
(
2017
).
12.
K. A.
Willets
,
A. J.
Wilson
,
V.
Sundaresan
, and
P. B.
Joshi
, “
Super-resolution imaging and plasmonics
,”
Chem. Rev.
117
,
7538
7582
(
2017
).
13.
L.
Guo
,
J. A.
Jackman
,
H.-H.
Yang
,
P.
Chen
,
N.-J.
Cho
, and
D.-H.
Kim
, “
Strategies for enhancing the sensitivity of plasmonic nanosensors
,”
Nano Today
10
,
213
239
(
2015
).
14.
A. N.
Koya
and
J.
Lin
, “
Charge transfer plasmons: Recent theoretical and experimental developments
,”
Appl. Phys. Rev.
4
,
021104
(
2017
).
15.
N.
Elahi
,
M.
Kamali
, and
M. H.
Baghersad
, “
Recent biomedical applications of gold nanoparticles: A review
,”
Talanta
184
,
537
556
(
2018
).
16.
Z.
Farka
,
T.
Juřík
,
D.
Kovář
,
L.
Trnková
, and
P.
Skládal
, “
Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges
,”
Chem. Rev.
117
,
9973
10042
(
2017
).
17.
J.
Olson
,
S.
Dominguez-Medina
,
A.
Hoggard
,
L.-Y.
Wang
,
W.-S.
Chang
, and
S.
Link
, “
Optical characterization of single plasmonic nanoparticles
,”
Chem. Soc. Rev.
44
,
40
57
(
2015
).
18.
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
S. V.
Karpov
, and
S. P.
Polyutov
, “
New ideally absorbing au plasmonic nanostructures for biomedical applications
,”
J. Quant. Spectrosc. Radiat. Transfer
187
,
54
61
(
2017
).
19.
A. D.
Utyushev
,
I. L.
Isaev
,
V. S.
Gerasimov
,
A. E.
Ershov
,
V. I.
Zakomirnyi
,
I. L.
Rasskazov
,
S. P.
Polyutov
,
H.
Ågren
, and
S. V.
Karpov
, “
Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths
,”
Opt. Express
28
,
1426
(
2020
).
20.
S. G.
Moiseev
,
I. A.
Glukhov
,
Y. S.
Dadoenkova
, and
F. F. L.
Bentivegna
, “
Polarization-selective defect mode amplification in a photonic crystal with intracavity 2D arrays of metallic nanoparticles
,”
J. Opt. Soc. Am. B
36
,
1645
1652
(
2019
).
21.
D. N.
Maksimov
,
V. S.
Gerasimov
,
S.
Romano
, and
S. P.
Polyutov
, “
Refractive index sensing with optical bound states in the continuum
,”
Opt. Express
28
,
38907
(
2020
).
22.
A. N.
Koya
and
W.
Li
, “
Multifunctional charge transfer plasmon resonance sensors
,”
Nanophotonics
12
,
2103
2113
(
2023
).
23.
B. D.
Dana
,
M. M.
Mena
,
J.
Lin
, and
A. N.
Koya
, “
Charge transfer plasmon resonances of conductively linked asymmetric gold nanoparticle dimers
,”
Appl. Phys. A
129
,
4
(
2022
).
24.
F.
Wen
,
Y.
Zhang
,
S.
Gottheim
,
N. S.
King
,
Y.
Zhang
,
P.
Nordlander
, and
N. J.
Halas
, “
Charge transfer plasmons: Optical frequency conductances and tunable infrared resonances
,”
ACS Nano
9
,
6428
6435
(
2015
).
25.
R.
Esteban
,
A. G.
Borisov
,
P.
Nordlander
, and
J.
Aizpurua
, “
Bridging quantum and classical plasmonics with a quantum-corrected model
,”
Nat. Commun.
3
,
825
(
2012
).
26.
R.
Esteban
,
A.
Zugarramurdi
,
P.
Zhang
,
P.
Nordlander
,
F. J.
García-Vidal
,
A. G.
Borisov
, and
J.
Aizpurua
, “
A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations
,”
Faraday Discuss.
178
,
151
183
(
2015
).
27.
W.
Zhu
,
R.
Esteban
,
A. G.
Borisov
,
J. J.
Baumberg
,
P.
Nordlander
,
H. J.
Lezec
,
J.
Aizpurua
, and
K. B.
Crozier
, “
Quantum mechanical effects in plasmonic structures with subnanometre gaps
,”
Nat. Commun.
7
,
11495
(
2016
).
28.
F.
Benz
,
C.
Tserkezis
,
L. O.
Herrmann
,
B.
de Nijs
,
A.
Sanders
,
D. O.
Sigle
,
L.
Pukenas
,
S. D.
Evans
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Nanooptics of molecular-shunted plasmonic nanojunctions
,”
Nano Lett.
15
,
669
674
(
2014
).
29.
A.
Fedorov
,
P.
Krasnov
,
M.
Visotin
,
F.
Tomilin
,
S.
Polyutov
, and
H.
Ågren
, “
Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory
,”
J. Chem. Phys.
151
,
244125
(
2019
).
30.
A. S.
Fedorov
,
P. O.
Krasnov
,
M. A.
Visotin
,
F. N.
Tomilin
, and
S. P.
Polyutov
, “
Thermoelectric and plasmonic properties of metal nanoparticles linked by conductive molecular bridge
,”
Phys. Status Solidi B
257
,
202000249
(
2020
).
31.
A.
Fedorov
,
M.
Visotin
,
V.
Gerasimov
,
S.
Polyutov
, and
P.
Avramov
, “
Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers
,”
J. Chem. Phys.
154
,
084123
(
2021
).
32.
A. S.
Fedorov
,
M. A.
Visotin
,
E. V.
Eremkin
,
P. O.
Krasnov
,
H.
Ågren
, and
S. P.
Polyutov
, “
Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges
,”
Phys. Chem. Chem. Phys.
24
,
19531
19540
(
2022
).
33.
N.
Jiang
,
T.
Zhu
, and
Y.
Hu
, “
Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for sers-based determination of thrombin
,”
Microchim. Acta
186
,
747
(
2019
).
34.
S.-Y.
Lee
,
G.
Fiorentini
,
A. M.
Szasz
,
G.
Szigeti
,
A.
Szasz
, and
C. A.
Minnaar
, “
Quo vadis oncological hyperthermia
,”
Front. Oncol.
10
,
1690
(
2020
)
35.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
36.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
37.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
38.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
40.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
41.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
42.
G.
Mie
, “
Beiträage zur optik trüuber medien, speziell kolloidaler metallöosungen
,”
Ann. Phys.
330
,
377
445
(
1908
).
43.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1998
).
44.
Y.-L.
Xu
, “
Electromagnetic scattering by an aggregate of spheres
,”
Appl. Opt.
34
,
4573
4588
(
1995
).
46.
M.
Magnozzi
,
M.
Ferrera
,
L.
Mattera
,
M.
Canepa
, and
F.
Bisio
, “
Plasmonics of au nanoparticles in a hot thermodynamic bath
,”
Nanoscale
11
,
1140
1146
(
2019
).
47.
B.
Khlebtsov
,
A.
Melnikov
,
V.
Zharov
, and
N.
Khlebtsov
, “
Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches
,”
Nanotechnology
17
,
1437
1445
(
2006
).
48.
I.
Romero
,
J.
Aizpurua
,
G. W.
Bryant
, and
F. J.
García De Abajo
, “
Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers
,”
Opt. Express
14
,
9988
(
2006
).
49.
L.
Fang
,
Y.
Wang
,
M.
Liu
,
M.
Gong
,
A.
Xu
, and
Z.
Deng
, “
Dry sintering meets wet silver‐ion ‘soldering’: Charge‐transfer plasmon engineering of solution‐assembled gold nanodimers from visible to near‐infrared I and II regions
,”
Angew. Chem.
128
,
14508
14512
(
2016
).
50.
Y.
Wang
,
L.
Fang
,
M.
Gong
, and
Z.
Deng
, “
Chemically modified nanofoci unifying plasmonics and catalysis
,”
Chem. Sci.
10
,
5929
5934
(
2019
).
51.
P.
Lei
,
Y.
Li
,
X.
Song
,
Y.
Hao
, and
Z.
Deng
, “
DNA-programmable agaus-primed conductive nanowelding wires-up wet colloids
,”
Angew. Chem.
134
,
e202203568
(
2022
).
52.
A. R.
Salmon
,
M.-E.
Kleemann
,
J.
Huang
,
W. M.
Deacon
,
C.
Carnegie
,
M.
Kamp
,
B.
De Nijs
,
A.
Demetriadou
, and
J. J.
Baumberg
, “
Light-induced coalescence of plasmonic dimers and clusters
,”
ACS Nano
14
,
4982
4987
(
2020
).
You do not currently have access to this content.