31P nuclear magnetic resonance (NMR) chemical shifts were shown to be very sensitive to the basis set used at the geometry optimization stage. Commonly used energy-optimized basis sets for a phosphorus atom containing only one polarization d-function were shown to be unable to provide correct equilibrium geometries for the calculations of phosphorus chemical shifts. The use of basis sets with at least two polarization d-functions on a phosphorus atom is strongly recommended. In this paper, an idea of creating the basis sets purposed for the geometry optimization that provide the least possible error coming from the geometry factor of accuracy in the resultant NMR shielding constants is proposed. The property-energy consisted algorithm with the target function in the form of the molecular energy gradient relative to P–P bond lengths was applied to create new geometry-oriented pecG-n (n = 1, 2) basis sets for a phosphorus atom. New basis sets have demonstrated by far superior performance as compared to the other commonly used energy-optimized basis sets in massive calculations of 31P NMR chemical shifts carried out at the gauge-including atomic orbital-coupled cluster singles and doubles/pecS-2 level of the theory by taking into account solvent, vibrational, and relativistic corrections.

1.
H.
Yu
,
H.
Yang
,
E.
Shi
, and
W.
Tang
, “
Development and clinical application of phosphorus-containing drugs
,”
Med. Drug Discovery
8
,
100063
(
2020
).
2.
S. A.
Hall
, “
Organic phosphorus insecticides
,” in
Agricultural Control Chemicals
,
Advances in Chemistry Vol. 1
(
American Chemical Society
,
1950
), Chap. 29, pp.
150
159
.
3.
A. F.
Grapov
and
N. N.
Mel’nikov
, “
Organophosphorus fungicides
,”
Russ. Chem. Rev.
42
,
772
781
(
1973
).
4.
Y.
Liu
and
P.
Zhang
, “
Review of phosphorus-based polymers for mineral scale and corrosion control in oilfield
,”
Polymers
14
,
2673
(
2022
).
5.
C.
Xie
,
A. J.
Smaligo
,
X.-R.
Song
, and
O.
Kwon
, “
Phosphorus-based catalysis
,”
ACS Cent. Sci.
7
,
536
558
(
2021
).
6.
T. W.
Selby
,
R. J.
Bosch
, and
D. C.
Fee
, “
Phosphorus additive chemistry and its effects on the phosphorus volatility of engine oils
,”
J. ASTM Int.
2
(
9
),
1
16
(
2005
).
7.
H.
Levin
,
F. P.
Farrell
, and
A. J.
Millendorf
, “
Determination of phosphorus in lubricating oil
,”
Ind. Eng. Chem. Anal. Ed.
14
,
122
123
(
1942
).
8.
P.
Legault
and
A.
Pardi
, “
31P chemical shift as a probe of structural motifs in RNA
,”
J. Magn. Reson., Ser. B
103
,
82
86
(
1994
).
9.
P.
Zhang
,
R.
Rycyna
, and
P. B.
Moore
, “
A study of the conformation of 5S RNA by 31P NMR
,”
Nucleic Acids Res.
17
,
7295
7302
(
1989
).
10.
B.
Luy
and
J. P.
Marino
, “
1H–31P CPMG-correlated experiments for the assignment of nucleic acids
,”
J. Am. Chem. Soc.
123
,
11306
11307
(
2001
).
11.
J.
Fukal
,
O.
Páv
,
M.
Buděšínský
,
J.
Šebera
, and
V.
Sychrovský
, “
The benchmark of 31P NMR parameters in phosphate: A case study on structurally constrained and flexible phosphate
,”
Phys. Chem. Chem. Phys.
19
,
31830
31841
(
2017
).
12.
L. B.
Krivdin
, “
Recent advances in computational 31P NMR: Part 1. Chemical shifts
,”
Magn. Reson. Chem.
58
,
478
499
(
2020
).
13.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
New efficient pecS-n (n = 1, 2) basis sets for quantum chemical calculations of 31P NMR chemical shifts
,”
Phys. Chem. Chem. Phys.
25
,
18728
18741
(
2023
).
14.
S. V.
Fedorov
,
Y. Y.
Rusakov
, and
L. B.
Krivdin
, “
Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections
,”
Magn. Reson. Chem.
52
,
699
710
(
2014
).
15.
M.
Pecul
,
M.
Urbańczyk
,
A.
Wodyński
, and
M.
Jaszuński
, “
DFT calculations of 31P spin–spin coupling constants and chemical shift in dioxaphosphorinanes
,”
Magn. Reson. Chem.
49
,
399
404
(
2011
).
16.
S. K.
Latypov
,
F. M.
Polyancev
,
D. G.
Yakhvarov
, and
O. G.
Sinyashin
, “
Quantum chemical calculations of 31P NMR chemical shifts: Scopes and limitations
,”
Phys. Chem. Chem. Phys.
17
,
6976
6987
(
2015
).
17.
S. K.
Latypov
,
S. A.
Kondrashova
,
F. M.
Polyancev
, and
O. G.
Sinyashin
, “
Quantum chemical calculations of 31P NMR chemical shifts in nickel complexes: Scope and limitations
,”
Organometallics
39
,
1413
1422
(
2020
).
18.
S. A.
Kondrashova
,
F. M.
Polyancev
, and
S. K.
Latypov
, “
DFT calculations of 31P NMR chemical shifts in palladium complexes
,”
Molecules
27
,
2668
(
2022
).
19.
W. H.
Hersh
and
T.-Y.
Chan
, “
Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods
,”
Beilstein J. Org. Chem.
19
,
36
56
(
2023
).
20.
M.
Schindler
and
W.
Kutzelnigg
, “
Theory of magnetic susceptibilities and N.M.R. chemical shifts in terms of localized quantities
,”
Mol. Phys.
48
,
781
798
(
1983
).
21.
T.
Weller
,
W.
Meiler
,
H.-J.
Köhler
,
H.
Lischka
, and
R.
Höller
, “
Ab initio calculation of magnetic properties of CO, the equilibrium geometry and the 13C, 17O and 27Al NMR shielding tensors of the system
,”
Chem. Phys. Lett.
98
,
541
(
1983
).
22.
R. M.
Stevens
and
M.
Karplus
, “
Magnetic properties and dipole moment of CO
,”
J. Chem. Phys.
49
,
1094
1100
(
1968
).
23.
R. E.
Wasylishen
,
J. O.
Friedrich
,
S.
Mooibroek
, and
J. B.
Macdonald
, “
Isotope shifts and spin–spin coupling constants in the 13C and 17O NMR spectra of carbon monoxide and carbon dioxide
,”
J. Chem. Phys.
83
,
548
551
(
1985
).
24.
D. G.
Gorenstein
and
D.
Kar
, “
31P chemical shifts in phosphate diester monoanions. Bond angle and torsional angle effects
,”
Biochem. Biophys. Res. Commun.
65
,
1073
1080
(
1975
).
25.
C.
Giessner-Prettre
,
B.
Pullman
,
F. R.
Parado
,
D. M.
Cheng
,
V.
Iuorno
, and
P. O. P.
Ts’O
, “
Contributions of the PO ester and CO torsion angles of the phosphate group to 31P-nuclear magnetic shielding constant in nucleic acids: Theoretical and experimental study of model compounds
,”
Biopolymers
23
,
377
388
(
1984
).
26.
D. B.
Chesnut
and
C. K.
Foley
, “
A basis set study of the NMR chemical shift in PH3
,”
J. Chem. Phys.
85
,
2814
2820
(
1986
).
27.
D. B.
Chesnut
and
C. K.
Foley
, “
Chemical shifts and bond modification effects for some small first-row-atom molecules
,”
J. Chem. Phys.
84
,
852
861
(
1986
).
28.
D.
Purdela
, “
Theory of 31P NMR chemical shifts. II. Bond-angle dependence
,”
J. Magn. Reson. (1969)
5
,
23
36
(
1971
).
29.
S.
Un
and
M. P.
Klein
, “
Study of prosphorus-31 NMR chemical shift tensors and their correlation to molecular structure
,”
J. Am. Chem. Soc.
111
,
5119
5124
(
1989
).
30.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
, “
The prediction of molecular equilibrium structures by the standard electronic wave functions
,”
J. Chem. Phys.
106
,
6430
6440
(
1997
).
31.
D. R.
Hartree
, “
The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods
,”
Math. Proc. Cambridge Philos. Soc.
24
,
89
110
(
1928
).
32.
J. C.
Slater
, “
The theory of complex spectra
,”
Phys. Rev.
34
,
1293
1322
(
1929
).
33.
V.
Fock
, “
Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems
,”
Z. Phys.
61
,
126
148
(
1930
).
34.
V.
Fock
, “
‘Selfconsistent field’ mit Austausch für Natrium
,”
Z. Phys.
62
,
795
805
(
1930
).
35.
J.
Gauss
, “
Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals
,”
Chem. Phys. Lett.
191
,
614
620
(
1992
).
36.
J.
Gauss
, “
Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts
,”
J. Chem. Phys.
99
,
3629
3643
(
1993
).
37.
J.
Gauss
and
J. F.
Stanton
, “
Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants
,”
J. Chem. Phys.
104
,
2574
2583
(
1996
).
38.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
39.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
40.
B.
Temelso
,
E. F.
Valeev
, and
C. D.
Sherrill
, “
A comparison of one-particle basis set completeness, higher-order electron correlation, relativistic effects, and adiabatic corrections for spectroscopic constants of BH, CH+, and NH
,”
J. Phys. Chem. A
108
,
3068
3075
(
2004
).
41.
M.
Heckert
,
M.
Kállay
,
D. P.
Tew
,
W.
Klopper
, and
J.
Gauss
, “
Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory
,”
J. Chem. Phys.
125
,
044108
(
2006
).
42.
P. R.
Rablen
,
S. A.
Pearlman
, and
J.
Finkbiner
, “
A comparison of density functional methods for the estimation of proton chemical shifts with chemical accuracy
,”
J. Phys. Chem. A
103
,
7357
7363
(
1999
).
43.
J.
Toušek
,
J.
Dostál
, and
R.
Marek
, “
Theoretical and experimental NMR chemical shifts of norsanguinarine and norchelerythrine
,”
J. Mol. Struct.
689
,
115
120
(
2004
).
44.
D. B.
Chesnut
and
L. D.
Quin
, “
A study of NMR chemical shielding in 5-coordinate phosphorus compounds (phosphoranes)
,”
Tetrahedron
61
,
12343
12349
(
2005
).
45.
Y.
Zhang
,
X.
Xu
, and
Y.
Yan
, “
Systematic investigation on the geometric dependence of the calculated nuclear magnetic shielding constants
,”
J. Comput. Chem.
29
,
1798
1807
(
2008
).
46.
T. T.
Nguyen
, “
1H/13C chemical shift calculations for biaryls: DFT approaches to geometry optimization
,”
R. Soc. Open Sci.
8
,
210954
(
2021
).
47.
I. L.
Rusakova
,
Y. Y.
Rusakov
, and
L. B.
Krivdin
, “
First example of the correlated calculation of the one-bond tellurium–carbon spin–spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects
,”
J. Comput. Chem.
37
,
1367
1372
(
2016
).
48.
S. A.
Kondrashova
,
F. M.
Polyancev
,
Y. S.
Ganushevich
, and
S. K.
Latypov
, “
DFT approach for predicting 13C NMR shifts of atoms directly coordinated to nickel
,”
Organometallics
40
,
1614
1625
(
2021
).
49.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
, “
Calculations of NMR shielding constants by uncoupled density functional theory
,”
Chem. Phys. Lett.
204
,
80
86
(
1993
).
50.
V. G.
Malkin
,
O. L.
Malkina
,
M. E.
Casida
, and
D. R.
Salahub
, “
Nuclear magnetic resonance shielding tensors calculated with a sum-over-states density functional perturbation theory
,”
J. Am. Chem. Soc.
116
,
5898
5908
(
1994
).
51.
V. G.
Malkin
,
O. L.
Malkina
,
L. A.
Erikson
, and
D. R.
Salahub
, in
Modern Density Functional Theory: A Tool for Chemistry
, 1st ed., edited by
P.
Politzer
and
J. M.
Seminario
(
Elsevier
,
Amsterdam, The Netherlands
,
1995
), Vol.
2
, pp.
273
347
.
52.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
, “
Calculations of NMR shielding constants beyond uncoupled density functional theory. IGLO approach
,”
Chem. Phys. Lett.
204
,
87
95
(
1993
).
53.
G.
Schreckenbach
and
T.
Ziegler
, “
Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory
,”
J. Phys. Chem.
99
,
606
611
(
1995
).
54.
G.
Schreckenbach
,
R. M.
Dickson
,
Y.
Ruiz-Morales
, and
T.
Ziegler
, “
The calculation of NMR parameters by density-functional theory—An approach based on gauge including atomic orbitals
,” in
Chemical Applications of Density Functional Theory
,
ACS Symposium Series Vol. 629
, edited by
B. B.
Laird
,
R. B.
Ross
, and
T.
Ziegler
(
American Chemical Society
,
Washington, DC
,
1996
), pp.
328
341
.
55.
I. L.
Rusakova
, “
Quantum chemical approaches to the calculation of NMR parameters: From fundamentals to recent advances
,”
Magnetochemistry
8
,
50
(
2022
).
56.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
57.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
58.
A. D.
Becke
, “
Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing
,”
J. Chem. Phys.
104
,
1040
1046
(
1996
).
59.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
60.
M.
Rezaei-Sameti
, “
Ab initio calculations of 31P NMR chemical shielding tensors in alkyl phosphorus compounds and comparison with experimental values
,”
J. Mol. Struct.: THEOCHEM
867
,
122
124
(
2008
).
61.
I.
Alkorta
and
J.
Elguero
, “
Ab initio (GIAO) calculations of absolute nuclear shieldings for representative compounds containing 1(2)H, 6(7)Li, 11B, 13C, 14(15)N, 17O, 19F, 29Si, 31P, 33S, and 35Cl nuclei
,”
Struct. Chem.
9
,
187
202
(
1998
).
62.
L.
Benda
,
Z.
Sochorová Vokáčová
,
M.
Straka
, and
V.
Sychrovský
, “
Correlating the 31P NMR chemical shielding tensor and the 2JP,C spin–spin coupling constants with torsion angles ζ and α in the backbone of nucleic acids
,”
J. Phys. Chem. B
116
,
3823
3833
(
2012
).
63.
K. A.
Chernyshev
,
L. I.
Larina
,
E. A.
Chirkina
, and
L. B.
Krivdin
, “
The effects of intramolecular and intermolecular coordination on 31P nuclear shielding: Phosphorylated azoles
,”
Magn. Reson. Chem.
50
,
120
127
(
2012
).
64.
J.
Fukal
,
O.
Páv
,
M.
Buděšınský
,
I.
Rosenberg
,
J.
Šebera
, and
V.
Sychrovský
, “
Structural interpretation of the 31P NMR chemical shifts in thiophosphate and phosphate: Key effects due to spin–orbit and explicit solvent
,”
Phys. Chem. Chem. Phys.
21
,
9924
9934
(
2019
).
65.
M.
Tafazzoli
and
H. P.
Ebrahimi
, “
Prediction of 31P-NMR chemical shifts using empirical models with modest methods and optimally selected basis sets
,”
Phosphorus, Sulfur, Silicon Relat. Elem.
186
,
1491
1500
(
2011
).
66.
K. A.
Chernyshev
,
L. I.
Larina
,
E. A.
Chirkina
,
V. G.
Rozinov
, and
L. B.
Krivdin
, “
Quantum-chemical calculations of chemical shifts in NMR spectra of organic molecules: V. Stereochemical structure of unsaturated phosphonic acids dichlorides from 31P NMR spectral data
,”
Russ. J. Org. Chem.
48
,
676
681
(
2012
).
67.
P.
Gao
,
J.
Zhang
, and
H.
Chen
, “
A systematic benchmarking of 31P and 19F NMR chemical shift predictions using different DFT/GIAO methods and applying linear regression to improve the prediction accuracy
,”
Int. J. Quantum Chem.
121
,
e26482
(
2021
).
68.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
69.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
5036
(
1999
).
70.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
71.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
72.
Y. Y.
Rusakov
,
I. L.
Rusakova
, and
L. B.
Krivdin
, “
Relativistic heavy atom effect on the 31P NMR parameters of phosphine chalcogenides. Part 1. Chemical shifts
,”
Magn. Reson. Chem.
56
,
1061
1073
(
2018
).
73.
I. L.
Rusakova
and
Y. Y.
Rusakov
, “
On the heavy atom on light atom relativistic effect in the NMR shielding constants of phosphine tellurides
,”
Magn. Reson. Chem.
57
,
1071
1083
(
2019
).
74.
Y. Y.
Rusakov
,
I. L.
Rusakova
,
V. A.
Semenov
,
D. O.
Samultsev
,
S. V.
Fedorov
, and
L. B.
Krivdin
, “
Calculation of 15N and 31P NMR chemical shifts of azoles, phospholes, and phosphazoles: A gateway to higher accuracy at less computational cost
,”
J. Phys. Chem. A
122
,
6746
6759
(
2018
).
75.
K. A.
Chernyshev
and
L. B.
Krivdin
, “
Quantum-chemical calculations of NMR chemical shifts of organic molecules: I. Phosphines, phosphine oxides, and phosphine sulfides
,”
Russ. J. Org. Chem.
46
,
785
790
(
2010
).
76.
R. J.
Bartlett
, “
Many-body perturbation theory and coupled cluster theory for electron correlation in molecules
,”
Annu. Rev. Phys. Chem.
32
,
359
401
(
1981
).
77.
R. M.
Aminova
,
E. R.
Baisupova
, and
A. V.
Aganov
, “
Calculations of 31P magnetic shielding constants of derivatives of betaine and phosphine molecules dissolved in different solvents by using supermolecular model and combined methods of quantum chemistry and molecular mechanics
,”
Appl. Magn. Reson.
40
,
147
170
(
2011
).
78.
K.
Chruszcz
,
M.
Barańska
,
K.
Czarniecki
,
B.
Boduszek
, and
L. M.
Proniewicz
, “
Experimental and calculated 1H, 13C and 31P NMR spectra of pyridine-2-phosphono-4-carboxylic acid
,”
J. Mol. Struct.
648
,
215
224
(
2003
).
79.
B.
Maryasin
and
H.
Zipse
, “
Theoretical studies of 31P NMR spectral properties of phosphanes and related compounds in solution
,”
Phys. Chem. Chem. Phys.
13
,
5150
5158
(
2011
).
80.
T. M.
Alam
, “
Ab initio calculations of 31P NMR chemical shielding anisotropy tensors in phosphates: Variations due to ring formation
,”
Int. J. Mol. Sci.
3
,
888
906
(
2002
).
81.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
,”
J. Chem. Phys.
54
,
724
728
(
1971
).
82.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
83.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
84.
G. W.
Spitznagel
,
T.
Clark
,
P.
von Ragué Schleyer
, and
W. J.
Hehre
, “
An evaluation of the performance of diffuse function-augmented basis sets for second row elements, Na-Cl
,”
J. Comput. Chem.
8
,
1109
1116
(
1987
).
85.
M. S.
Gordon
,
J. S.
Binkley
,
J. A.
Pople
,
W. J.
Pietro
, and
W. J.
Hehre
, “
Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements
,”
J. Am. Chem. Soc.
104
,
2797
2803
(
1982
).
86.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements
,”
J. Chem. Phys.
77
,
3654
3665
(
1982
).
87.
F.
Jensen
, “
Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods
,”
J. Chem. Theory Comput.
4
,
719
727
(
2008
).
88.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
89.
S. A.
Kondrashova
and
S. K.
Latypov
, “
NMR ‘finger prints’ of N-heterocyclic carbenes, DFT analysis: Scopes and limitations
,”
Molecules
28
,
7729
(
2023
).
90.
R. O.
Ramabhadran
and
K.
Raghavachari
, “
Extrapolation to the gold-standard in quantum chemistry: Computationally efficient and accurate CCSD(T) energies for large molecules using an automated thermochemical hierarchy
,”
J. Chem. Theory Comput.
9
,
3986
3994
(
2013
).
91.
J.
Řezáč
and
P.
Hobza
, “
Describing noncovalent interactions beyond the common approximations: How accurate is the ‘gold standard,’ CCSD(T) at the complete basis set limit?
,”
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
92.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin-spin coupling constants involving 1H, 13C, 15N, and 19F nuclei
,”
Phys. Chem. Chem. Phys.
23
,
14925
14939
(
2021
).
93.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin–spin coupling constants involving 31P and 29Si: The advanced PEC method
,”
Molecules
27
,
6145
(
2022
).
94.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
New pecJ-n (n = 1, 2) basis sets for selenium atom purposed for the calculations of NMR spin–spin coupling constants involving selenium
,”
Int. J. Mol. Sci.
24
,
7841
(
2023
).
95.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
New pecS-n (n = 1, 2) basis sets for quantum chemical calculations of the NMR chemical shifts of H, C, N, and O nuclei
,”
J. Chem. Phys.
156
,
244112
(
2022
).
96.
Y. Y.
Rusakov
,
V. A.
Semenov
, and
I. L.
Rusakova
, “
On the efficiency of the density functional theory (DFT)-based computational protocol for 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of natural products: Studying the accuracy of the pecS-n (n = 1, 2) basis sets
,”
Int. J. Mol. Sci.
24
,
14623
(
2023
).
97.
R. M.
Dreizler
and
E. K. U.
Gross
, in
Density Functional Theory: An Approach to the Quantum Many-Body Problem
, edited by
R. M.
Dreizler
and
E. K. U.
Gross
(
Springer-Verlag
,
Berlin, Heidelberg
,
1990
), pp.
1
312
.
98.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
, “
The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level
,”
J. Mol. Struct.: THEOCHEM
464
,
211
226
(
1999
).
99.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
100.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
,
P. G.
Szalay
with contributions from
A.
Asthana
,
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
M.-P.
Kitsaras
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
J.
Liu
,
T.
Metzroth
,
L. A.
Mück
,
T.
Nottoli
,
D. P.
O’Neill
,
J.
Oswald
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
T.
Uhlirova
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
,
P.
Yergün
,
C.
Zhang
,
X.
Zheng
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
101.
Gaussian 09, Revision C.01
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
102.
J.
Gauss
and
J. F.
Stanton
, “
Gauge-invariant calculation of nuclear magnetic shielding constants at the coupled–cluster singles and doubles level
,”
J. Chem. Phys.
102
,
251
253
(
1995
).
103.
A. D.
Becke
, “
Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals
,”
J. Chem. Phys.
107
,
8554
8560
(
1997
).
104.
P. J.
Wilson
,
T. J.
Bradley
, and
D. J.
Tozer
, “
Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials
,”
J. Chem. Phys.
115
,
9233
9242
(
2001
).
105.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.
Høyvik
,
M. F.
Iozzi
,
B.
Jansik
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Salek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2014
).
106.
T. A.
Ruden
,
O. B.
Lutnæs
,
T.
Helgaker
, and
K.
Ruud
, “
Vibrational corrections to indirect nuclear spin–spin coupling constants calculated by density-functional theory
,”
J. Chem. Phys.
118
,
9572
9581
(
2003
).
107.
T. A.
Ruden
and
K.
Ruud
, “
Ro-vibrational corrections to NMR parameters
,” in
Calculation of NMR and EPR Parameters. Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2004
), Chap. 10, pp.
153
173
.
108.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC22 (
2022
), written by
H. J. A.
Jensen
,
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
, and
L.
Visscher
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
C.
Chibueze
,
J.
Creutzberg
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich-Paris
,
J.
Henriksson
,
M.
van Horn
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
Di Remigio
,
M.
Repisky
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
,
S.
Yamamoto
, and
X.
Yuan
, available at http://dx.doi.org/10.5281/zenodo.6010450, see also http://www.diracprogram.org.
109.
Y.
Nomura
,
Y.
Takeuchi
, and
N.
Nakagawa
, “
Substituent effects in aromatic proton nmr spectra. III. Substituent effects caused by halogens
,”
Tetrahedron Lett.
10
,
639
642
(
1969
).
110.
J.
Vícha
,
J.
Novotný
,
S.
Komorovsky
,
M.
Straka
,
M.
Kaupp
, and
R.
Marek
, “
Relativistic heavy-neighbor-atom effects on NMR shifts: Concepts and trends across the periodic table
,”
Chem. Rev.
120
,
7065
7103
(
2020
).
111.
J.
Vícha
,
S.
Komorovsky
,
M.
Repisky
,
R.
Marek
, and
M.
Straka
, “
Relativistic spin–orbit heavy atom on the light atom NMR chemical shifts: General trends across the periodic table explained
,”
J. Chem. Theory Comput.
14
,
3025
3039
(
2018
).
112.
I. L.
Rusakova
and
Y. Y.
Rusakov
, “
Relativistic effects from heavy main group p-elements on the NMR chemical shifts of light atoms: From pioneering studies to recent advances
,”
Magnetochemistry
9
,
24
(
2023
).
113.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
Long-range relativistic heavy atom effect on 1H NMR chemical shifts of selenium- and tellurium-containing compounds
,”
Int. J. Quantum Chem.
119
,
e25809
(
2019
).
114.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
Relativistic heavy atom effect on 13C NMR chemical shifts initiated by adjacent multiple chalcogens
,”
Magn. Reson. Chem.
56
,
716
726
(
2018
).
115.
J. C.
Slater
and
J. C.
Phillips
,
Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids
, 1st ed. (
McGraw-Hill
,
New York
,
1974
), Vol.
4
, pp.
1
583
.
116.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
117.
O. B.
Lutnæs
,
T.
Helgaker
, and
M.
Jaszuński
, “
Spin–spin coupling constants and triplet instabilities in Kohn–Sham theory
,”
Mol. Phys.
108
,
2579
2590
(
2010
).
118.
Y. Y.
Rusakov
and
I. L.
Rusakova
, “
What most affects the accuracy of 125Te NMR chemical shift calculations
,”
J. Phys. Chem. A
124
,
6714
6725
(
2020
).
119.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar
,”
Theor. Chem. Acc.
135
,
128
(
2016
).
120.
A. F.
Maldonado
and
G. A.
Aucar
, “
The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms
,”
Phys. Chem. Chem. Phys.
11
,
5615
5627
(
2009
).
121.
M.
Olejniczak
,
R.
Bast
,
T.
Saue
, and
M.
Pecul
, “
A simple scheme for magnetic balance in four-component relativistic Kohn–Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis
,”
J. Chem. Phys.
136
,
014108
(
2012
).
122.
Y.
Rusakov
,
I. L.
Rusakova
, and
L. B.
Krivdin
, “
MP2 calculation of 77Se NMR chemical shifts taking into account relativistic corrections
,”
Magn. Reson. Chem.
53
,
485
492
(
2015
).
123.
S. F.
Sousa
,
P. A.
Fernandes
, and
M. J.
Ramos
, “
General performance of density functionals
,”
J. Phys. Chem. A
111
,
10439
10452
(
2007
).
124.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
, 2nd ed. (
Wiley-VCH Verlag GmbH
,
Weinheim, Federal Republic of Germany
,
2001
), pp.
1
306
.
125.
R.
Ditchfield
, “
Molecular orbital theory of magnetic shielding and magnetic susceptibility
,”
J. Chem. Phys.
56
,
5688
5691
(
1972
).
126.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
, “
Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations
,”
J. Am. Chem. Soc.
112
,
8251
8260
(
1990
).
127.
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
, “
The use of locally dense basis sets in the calculation of indirect nuclear spin–spin coupling constants: The vicinal coupling constants in H3C–CH2X (X = H, F, Cl, Br, I)
,”
J. Chem. Phys.
112
,
6201
6208
(
2000
).
128.
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
, “
Large long-range F–F indirect spin–spin coupling constants. Prediction of measurable F–F couplings over a few nanometers
,”
J. Phys. Chem. A
108
,
5393
5398
(
2004
).
129.
P. F.
Provasi
and
S. P. A.
Sauer
, “
Optimized basis sets for the calculation of indirect nuclear spin-spin coupling constants involving the atoms B, Al, Si, P, and Cl
,”
J. Chem. Phys.
133
,
054308
(
2010
).
130.
M.
Sanchez
,
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
, “
On the usage of locally dense basis sets in the calculation of NMR indirect nuclear spin–spin coupling constants: Vicinal fluorine–fluorine couplings
,”
Adv. Quantum Chem.
48
,
161
183
(
2005
).
131.
P. F.
Provasi
,
G. A.
Aucar
,
M.
Sanchez
,
I.
Alkorta
,
J.
Elguero
, and
S. P. A.
Sauer
, “
Interaction energies and NMR indirect nuclear spin–spin coupling constants in linear HCN and HNC complexes
,”
J. Phys. Chem. A
109
,
6555
6564
(
2005
).
132.
P. R.
Spackman
,
D.
Jayatilaka
, and
A.
Karton
, “
Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures
,”
J. Chem. Phys.
145
,
104101
(
2016
).
133.
J.
Černý
,
M.
Pitońák
,
K. E.
Riley
, and
P.
Hobza
, “
Complete basis set extrapolation and hybrid schemes for geometry gradients of noncovalent complexes
,”
J. Chem. Theory Comput.
7
,
3924
3934
(
2011
).
134.
C. E.
Warden
,
D. G. A.
Smith
,
L. A.
Burns
,
U.
Bozkaya
, and
C. D.
Sherrill
, “
Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory
,”
J. Chem. Phys.
152
,
124109
(
2020
).
135.
W.-M.
Hoe
,
A. J.
Cohen
, and
N. C.
Handy
, “
Assessment of a new local exchange functional OPTX
,”
Chem. Phys. Lett.
341
,
319
328
(
2001
).
136.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
137.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
138.
N. X.
Wang
and
A. K.
Wilson
, “
The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets
,”
J. Chem. Phys.
121
,
7632
7646
(
2004
).
139.
K. E.
Riley
,
E. N.
Brothers
,
K. B.
Ayers
, and
K. M.
Merz
, “
Accurate atomic and molecular calculations without gradient corrections: Scaled SVWNV density functional
,”
J. Chem. Theory Comput.
1
,
546
553
(
2005
).
140.
N. E.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
, “
Density functionals for inorganometallic and organometallic chemistry
,”
J. Phys. Chem. A
109
,
11127
11143
(
2005
).
141.
N. E.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
, “
Databases for transition element bonding: Metal–metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations
,”
J. Phys. Chem. A
109
,
4388
4403
(
2005
).
142.
K. E.
Riley
,
B. T.
Op’t Holt
, and
K. M.
Merz
, Jr.
, “
Critical assessment of the performance of density functional methods for several atomic and molecular properties
,”
J. Chem. Theory Comput.
3
,
407
433
(
2007
).
143.
Y.
Zhao
and
D. G.
Truhlar
, “
Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions
,”
J. Phys. Chem. A
108
,
6908
6918
(
2004
).
144.
N. C.
Handy
and
A. J.
Cohen
, “
Left-right correlation energy
,”
Mol. Phys.
99
,
403
412
(
2001
).
145.
J.
Baker
and
P.
Pulay
, “
Assessment of the Handy–Cohen optimized exchange density functional for organic reactions
,”
J. Chem. Phys.
117
,
1441
1449
(
2002
).
146.
J.
Baker
and
P.
Pulay
, “
Assessment of the OLYP and O3LYP density functionals for first-row transition metals
,”
J. Comput. Chem.
24
,
1184
1191
(
2003
).
147.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
148.
N.
Inai
,
S.
Yamaguchi
, and
T.
Yanai
, “
Theoretical insight into the effect of phosphorus oxygenation on nonradiative decays: Comparative analysis of P-bridged stilbene analogs
,”
ACS Phys. Chem. Au
3
,
540
552
(
2023
).
149.
Z. S.
Safi
and
N.
Wazzan
, “
DFT calculations of 1H- and 13C-NMR chemical shifts of 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine in solution
,”
Sci. Rep.
12
,
17798
(
2022
).
150.
C. M.
Reeves
and
R.
Fletcher
, “
Use of Gaussian functions in the calculation of wavefunctions for small molecules. III. The orbital basis and its effect on valence
,”
J. Chem. Phys.
42
,
4073
4081
(
1965
).
151.
F.
Jensen
, “
Basis sets
,” in
Introduction to Computational Chemistry
, 2nd ed., edited by
F.
Jensen
(
John Wiley & Sons Ltd.
,
The Atrium, Southern Gate, Chichester
,
2007
), Chap. 5, pp.
192
231
.
152.
R. L.
Harrison
, “
Introduction to Monte Carlo simulation
,”
AIP Conf. Proc.
1204
,
17
21
(
2010
).
153.
P.
Del Moral
,
A.
Doucet
, and
A.
Jasra
, “
Sequential Monte Carlo samplers
,”
J. R. Stat. Soc. Ser. B
68
,
411
436
(
2006
).
154.
J.
Verbeke
and
R.
Cools
, “
The Newton-Raphson method
,”
Int. J. Math. Educ. Sci. Technol.
26
,
177
193
(
1995
).
155.
F.
Jensen
, “
Polarization consistent basis sets: Principles
,”
J. Chem. Phys.
115
,
9113
9125
(
2001
).
156.
F.
Jensen
and
T.
Helgaker
, “
Polarization consistent basis sets. V. The elements Si–Cl
,”
J. Chem. Phys.
121
,
3463
3470
(
2004
).
157.
F.
Jensen
, “
Method calibration or data fitting?
,”
J. Chem. Theory Comput.
14
,
4651
4661
(
2018
).
158.
R. C.
Raffenetti
, “
General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; molecular integral evaluation
,”
J. Chem. Phys.
58
,
4452
4458
(
1973
).
159.
E.
Papajak
and
D. G.
Truhlar
, “
Efficient diffuse basis sets for density functional theory
,”
J. Chem. Theory Comput.
6
,
597
601
(
2010
).
160.
R. K.
Harris
,
E. D.
Becker
,
S. M.
Cabral de Menezes
,
R.
Goodfellow
, and
P.
Granger
, “
NMR nomenclature: Nuclear spin properties and conventions for chemical shifts: IUPAC recommendations 2001
,”
Solid State Nucl. Magn. Reson.
22
,
458
483
(
2002
).
161.
R. K.
Harris
,
E. D.
Becker
,
S. M. C.
De Menezes
,
P.
Granger
,
R. E.
Hoffman
, and
K. W.
Zilm
, “
Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008)
,”
Magn. Reson. Chem.
46
,
582
598
(
2008
).
162.
J.-C.
Guillemin
,
T.
Janati
, and
J.-M.
Denis
, “
A simple route to kinetically unstabilized phosphaalkynes
,”
J. Org. Chem.
66
,
7864
7868
(
2001
).
163.
S. P.
Anderson
,
H.
Goldwhite
,
D.
Ko
,
A.
Letsou
, and
F.
Esparza
, “
The nature of the carbon–phosphorus bond in methylidynephosphine
,”
J. Chem. Soc., Chem. Commun.
1975
,
744
745
.
164.
N. P.
Tsvetkov
,
J. G.
Andino
,
H.
Fan
,
A. Y.
Verat
, and
K. G.
Caulton
, “
Reactivity of the terminal oxo species ((tBu2PCH2SiMe2)2N)RhO
,”
Dalton Trans.
42
,
6745
6755
(
2013
).
165.
C. J.
Jameson
,
A.
de Dios
, and
A.
Keith Jameson
, “
Absolute shielding scale for 31P from gas-phase NMR studies
,”
Chem. Phys. Lett.
167
,
575
582
(
1990
).
166.
A.
Schmidpeter
,
C.
Leyh
, and
K.
Karaghiosoff
, “
1,2,3,5-diazadiphospholes—The first 1,3-diphospha-1,3-diene system
,”
Angew. Chem., Int. Ed.
24
,
124
125
(
1985
).
167.
S. B.
Tzokov
,
N. G.
Vassilev
,
R. T.
Momtcheva
,
J.
Kaneti
, and
D. D.
Petkova
, “
H-tetraoxaspirophosphoranes as possible intermediates in the phosphonylation by phosphorous acid/oxiranes
,”
Phosphorus, Sulfur, Silicon Relat. Elem.
166
,
187
196
(
2000
).
168.
A. J.
Ashe
III
,
R. R.
Sharp
, and
J. W.
Tolan
, “
The nuclear magnetic resonance spectra of phosphabenzene, arsabenzene, and stibabenzene
,”
J. Am. Chem. Soc.
98
,
5451
5456
(
1976
).
169.
F.
Mathey
, “
The organic chemistry of phospholes
,”
Chem. Rev.
88
,
429
453
(
1988
).
170.
C.
Charrier
,
H.
Bonnard
,
G.
de Lauzon
, and
F.
Mathey
, “
Proton [1,5] shifts in P-unsubstituted 1H-phospholes. Synthesis and chemistry of 2H-phosphole dimers
,”
J. Am. Chem. Soc.
105
,
6871
6877
(
1983
).
171.
S. V.
Fedorov
,
L. B.
Krivdin
,
Y. Y.
Rusakov
,
N. A.
Chernysheva
, and
V. L.
Mikhailenko
, “
Trivinylphosphine and trivinylphosphine chalcogenides: Stereochemical trends of 31P–1H spin-spin coupling constants
,”
Magn. Reson. Chem.
48
,
S48
S55
(
2010
).
172.
Irkutsk Supercomputer Center of SB RAS, Irkutsk: ISDCT SB RAS, http://hpc.icc.ru, accessed in December 2023.

Supplementary Material

You do not currently have access to this content.