The correlation consistent basis sets (cc-pVnZ with n = D, T, Q, 5) for the Ga–Br elements have been redesigned, tuning the sets for use for density functional approximations. Steps to redesign these basis sets for an improved correlation energy recovery and efficiency include truncation of higher angular momentum functions, recontraction of basis set coefficients, and reoptimization of basis set exponents. These redesigned basis sets are compared with conventional cc-pVnZ basis sets and other basis sets, which are, in principle, designed to achieve systematic improvement with respect to increasing basis set size. The convergence of atomic energies, bond lengths, bond dissociation energies, and enthalpies of formation to the Kohn–Sham limit is improved relative to other basis sets where convergence to the Kohn–Sham limit is typically not observed.

1.
Basis Sets in Computational Chemistry
, 1st ed., edited by
E.
Perit
(
Springer International Publishing
,
Cham
,
2021
).
2.
T.
Helgaker
,
W.
Klopper
, and
D. P.
Tew
, “
Quantitative quantum chemistry
,”
Mol. Phys.
106
(
16–18
),
2107
2143
(
2008
).
3.
I. Y.
Zhang
and
A.
Grüneis
, “
Coupled cluster theory in materials science
,”
Front. Mater.
6
,
123
(
2019
).
4.
M.
Mörchen
,
L.
Freitag
, and
M.
Reiher
, “
Tailored coupled cluster theory in varying correlation regimes
,”
J. Chem. Phys.
153
(
24
),
244113
(
2020
).
5.
H. S.
Yu
,
S. L.
Li
, and
D. G.
Truhlar
, “
Perspective: Kohn-Sham density functional theory descending a staircase
,”
J. Chem. Phys.
145
,
130901
(
2016
).
6.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
7.
R.
Peverati
and
D. G.
Truhlar
, “
Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics
,”
Philos. Trans. R. Soc., A
372
(
2011
),
20120476
(
2014
).
8.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
(
18
),
18A301
(
2014
).
9.
A.
Pribram-Jones
,
D. A.
Gross
, and
K.
Burke
, “
DFT: A theory full of holes?
,”
Annu. Rev. Phys. Chem.
66
,
283
304
(
2015
).
10.
J. J.
Determan
,
K.
Poole
,
G.
Scalmani
,
M. J.
Frisch
,
B. G.
Janesko
, and
A. K.
Wilson
, “
Comparative study of nonhybrid density functional approximations for the prediction of 3d transition metal thermochemistry
,”
J. Chem. Theory Comput.
13
(
10
),
4907
4913
(
2017
).
11.
B. G.
Janesko
, “
Replacing hybrid density functional theory: Motivation and recent advances
,”
Chem. Soc. Rev.
50
(
15
),
8470
8495
(
2021
).
12.
P.
Morgante
and
R.
Peverati
, “
The devil in the details: A tutorial review on some undervalued aspects of density functional theory calculations
,”
Int. J. Quantum Chem.
120
(
18
),
e26332
(
2020
).
13.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
14.
J. M. L.
Martin
, “
A simple ‘range extender’ for basis set extrapolation methods for MP2 and coupled cluster correlation energies
,”
AIP Conf. Proc.
2040
(
1
),
020008
(
2018
).
15.
N. X.
Wang
and
A. K.
Wilson
, “
The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets
,”
J. Chem. Phys.
121
(
16
),
7632
7646
(
2004
).
16.
N. X.
Wang
and
A. K.
Wilson
, “
Density functional theory and the correlation consistent basis sets: The tight d effect on HSO and HOS
,”
J. Phys. Chem. A
109
(
32
),
7187
7196
(
2005
).
17.
N. X.
Wang
and
A. K.
Wilson
, “
Effects of basis set choice upon the atomization energy of the second-row compounds SO2, CCl, and ClO2 for B3LYP and B3PW91
,”
J. Phys. Chem. A
107
(
34
),
6720
6724
(
2003
).
18.
N. X.
Wang
and
A. K.
Wilson
, “
Behaviour of density functionals with respect to basis set: II. Polarization consistent basis sets
,”
Mol. Phys.
103
(
2–3
),
345
358
(
2005
).
19.
N. X.
Wang
,
K.
Venkatesh
, and
A. K.
Wilson
, “
Behavior of density functionals with respect to basis set. 3. Basis set superposition error
,”
J. Phys. Chem. A
110
(
2
),
779
784
(
2006
).
20.
D.
Feller
and
D. A.
Dixon
, “
Density functional theory and the basis set truncation problem with correlation consistent basis sets: Elephant in the room or mouse in the closet?
,”
J. Phys. Chem. A
122
(
9
),
2598
2603
(
2018
).
21.
A.
Mahler
,
J. J.
Determan
, and
A. K.
Wilson
, “
Correlation consistent basis sets designed for density functional theory: Second-row (Al-Ar)
,”
J. Chem. Phys.
151
(
6
),
064110
(
2019
).
22.
J. S.
Gibson
, “
From development of semi-empirical atomistic potentials to applications of correlation consistent basis sets
,” Ph.D. dissertation (
University of North Texas
,
Denton, TX
,
2014
).
23.
B. P.
Prascher
and
A. K.
Wilson
, “
The behaviour of density functionals with respect to basis set. V. Recontraction of correlation consistent basis sets
,”
Mol. Phys.
105
(
19–22
),
2899
2917
(
2007
).
24.
B. P.
Prascher
,
B. R.
Wilson
, and
A. K.
Wilson
, “
Behavior of density functionals with respect to basis set. VI. Truncation of the correlation consistent basis sets
,”
J. Chem. Phys.
127
(
12
),
124110
(
2007
).
25.
G. S.
Heverly-Coulson
and
R. J.
Boyd
, “
Systematic study of the performance of density functional theory methods for prediction of energies and geometries of organoselenium compounds
,”
J. Phys. Chem. A
115
(
18
),
4827
4831
(
2011
).
26.
J. J.
Determan
and
A. K.
Wilson
, “
Bonding properties of selenium-carbon complexes: Computational modeling of H3CSeH, H2CSe, HOCSeH, H2CSeO, SeC and HCSeOH
,”
Comput. Theor. Chem.
1017
,
41
47
(
2013
).
27.
N.
Iqbal
,
M.
Yaqoob
,
M.
Javed
,
M.
Abbasi
,
J.
Iqbal
, and
M. A.
Iqbal
, “
Synthesis in combination with biological and computational evaluations of selenium-N-heterocyclic carbene compounds
,”
Comput. Theor. Chem.
1197
,
113135
(
2021
).
28.
D. K.
Lewis
,
A.
Ramasubramaniam
, and
S.
Sharifzadeh
, “
Tuned and screened range-separated hybrid density functional theory for describing electronic and optical properties of defective gallium nitride
,”
Phys. Rev. Mater.
4
(
6
),
063803
(
2020
).
29.
D. K.
Lewis
,
M.
Matsubara
,
E.
Bellotti
, and
S.
Sharifzadeh
, “
Quasiparticle and hybrid density functional methods in defect studies: An application to the nitrogen vacancy in GaN
,”
Phys. Rev. B
96
(
23
),
235203
(
2017
).
30.
X.
Ye
,
L.
Yang
,
Y.
Li
,
J.
Huang
,
L.
Zhou
,
Q.
Lei
,
W.
Fang
, and
H.
Xie
, “
Reaction mechanisms of a tungsten–germylyne complex with one or two molecules of alcohols and arylaldehydes: A DFT study
,”
Eur. J. Inorg. Chem.
2014
(9),
1502
1511
.
31.
H.
Hashimoto
,
T.
Fukuda
,
H.
Tobita
,
M.
Ray
, and
S.
Sakaki
, “
Formation of a germylyne complex: Dehydrogenation of a hydrido(hydrogermylene)tungsten complex with mesityl isocyanate
,”
Angew. Chem., Int. Ed.
51
(
12
),
2930
2933
(
2012
).
32.
J. S.
Ritch
and
B. J.
Charette
, “
An experimental and computational comparison of phosphorus- and selenium-based ligands for catalysis
,”
Can. J. Chem.
94
(
4
),
386
391
(
2016
).
33.
H.
Imoto
and
K.
Naka
, “
The dawn of functional organoarsenic chemistry
,”
Chem. - Eur. J.
25
(
8
),
1883
1894
(
2019
).
34.
Z.
Chen
, “
Recent development of biomimetic halogenation inspired by vanadium dependent haloperoxidase
,”
Coord. Chem. Rev.
457
,
214404
(
2022
).
35.
S.
Nardis
,
F.
Mandoj
,
M.
Stefanelli
, and
R.
Paolesse
, “
Metal complexes of corrole
,”
Coord. Chem. Rev.
388
,
360
405
(
2019
).
36.
G.
Zichittella
,
V.
Paunović
, and
J.
Pérez-Ramírez
,
Chimia (Aarau)
(
Swiss Chemical Society
,
2019
), pp.
288
293
.
37.
J.
Witte
,
J. B.
Neaton
, and
M.
Head-Gordon
, “
Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory
,”
J. Chem. Phys.
144
(
19
),
194306
(
2016
).
38.
G. G.
Camiletti
,
S. F.
Machado
, and
F. E.
Jorge
, “
Gaussian basis set of double zeta quality for atoms K through Kr: Application in DFT calculations of molecular properties
,”
J. Comput. Chem.
29
(
14
),
2434
2444
(
2008
).
39.
G. A.
Ceolin
,
R. C.
de Berrêdo
, and
F. E.
Jorge
, “
Gaussian basis sets of quadruple zeta quality for potassium through xenon: Application in CCSD(T) atomic and molecular property calculations
,”
Theor. Chem. Acc.
132
(
3
),
1339
(
2013
).
40.
S. F.
MacHado
,
G. G.
Camiletti
,
A. C.
Neto
,
F. E.
Jorge
, and
R. S.
Jorge
, “
Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: Application in DFT and CCSD(T) calculations of molecular properties
,”
Mol. Phys.
107
(
16
),
1713
1727
(
2009
).
41.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
42.
F.
Jensen
, “
Polarization consistent basis sets. VII. The elements K, Ca, Ga, Ge, As, Se, Br, and Kr
,”
J. Chem. Phys.
136
(
11
),
114107
(
2012
).
43.
M.
Sekiya
,
T.
Noro
,
Y.
Osanai
, and
T.
Koga
, “
Contracted polarization functions for the atoms Ca, Ga-Kr, Sr, and In-Xe
,”
Theor. Chem. Acc.
106
(
4
),
297
300
(
2001
).
44.
M.
Müller
,
A.
Hansen
, and
S.
Grimme
, “
ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set
,”
J. Chem. Phys.
158
(
1
),
014103
(
2023
).
45.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
, “
B97-3c: A revised low-cost variant of the B97-D density functional method
,”
J. Chem. Phys.
148
(
6
),
064104
(
2018
).
46.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
, “
Consistent structures and interactions by density functional theory with small atomic orbital basis sets
,”
J. Chem. Phys.
143
(
5
),
054107
(
2015
).
47.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J. M.
Mewes
, “
r2SCAN-3c: A ‘Swiss army knife’ composite electronic-structure method
,”
J. Chem. Phys.
154
(
6
),
064103
(
2021
).
48.
S. M.
Tekarli
,
M. L.
Drummond
,
T. G.
Williams
,
T. R.
Cundari
, and
A. K.
Wilson
, “
Performance of density functional theory for 3d transition metal-containing complexes: Utilization of the correlation consistent basis sets
,”
J. Phys. Chem. A
113
(
30
),
8607
8614
(
2009
).
49.
W.
Jiang
,
M. L.
Laury
,
M.
Powell
, and
A. K.
Wilson
, “
Comparative study of single and double hybrid density functionals for the prediction of 3d transition metal thermochemistry
,”
J. Chem. Theory Comput.
8
(
11
),
4102
4111
(
2012
).
50.
J. J.
Determan
,
S.
Moncho
,
E. N.
Brothers
, and
B. G.
Janesko
, “
Simulating gold’s structure-dependent reactivity: Nonlocal density functional theory studies of hydrogen activation by gold clusters, nanowires, and surfaces
,”
J. Phys. Chem. C
118
(
29
),
15693
15704
(
2014
).
51.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton
,”
J. Chem. Phys.
110
(
16
),
7667
7676
(
1999
).
52.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
(
6
),
3098
3100
(
1988
).
53.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
(
2
),
785
789
(
1988
).
54.
A.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
55.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Errata: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
57.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
58.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
59.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
,”
J. Chem. Phys.
119
(
23
),
12129
(
2003
).
60.
H. J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
(
14
),
144107
(
2020
).
61.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
, and
H. P.
Hratchian
,
Gaussian 16, Revision C.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
62.
R. C.
Raffenetti
, “
General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation
,”
J. Chem. Phys.
58
(
10
),
4452
(
1973
).
63.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
252
(
1998
).
64.
A.
Karton
and
J. M. L.
Martin
, “
Comment on: ‘Estimating the Hartree-Fock limit from finite basis set calculations’ [Jensen F (2005) Theor Chem Acc 113:267]
,”
Theor. Chem. Acc.
115
(
4
),
330
333
(
2006
).
65.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
(
4
),
553
566
(
1970
).
66.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
, “
Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies
,”
J. Chem. Phys.
123
(
12
),
124107
(
2005
).
67.
P.
Krauss
, “
Extrapolating DFT toward the complete basis set limit: Lessons from the PBE family of functionals
,”
J. Chem. Theory Comput.
17
(
9
),
5651
5660
(
2021
).
68.
NIST Standard Simultation Website
,
NIST Standard Database
, edited by
V. K.
Shen
,
D. W.
Siderius
,
W. P.
Krekelberg
, and
H. W.
Hatch
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2017
).
69.
R.
Weber
,
B.
Hovda
,
G.
Schoendorff
, and
A. K.
Wilson
, “
Behavior of the Sapporo-nZP-2012 basis set family
,”
Chem. Phys. Lett.
637
,
120
126
(
2015
).

Supplementary Material

You do not currently have access to this content.