A Markov state model is a powerful tool that can be used to track the evolution of populations of configurations in an atomistic representation of a protein. For a coarse-grained linear chain model with discontinuous interactions, the transition rates among states that appear in the Markov model when the monomer dynamics is diffusive can be determined by computing the relative entropy of states and their mean first passage times, quantities that are unchanged by the specification of the energies of the relevant states. In this paper, we verify the folding dynamics described by a diffusive linear chain model of the crambin protein in three distinct solvent systems, each differing in complexity: a hard-sphere solvent, a solvent undergoing multi-particle collision dynamics, and an implicit solvent model. The predicted transition rates among configurations agree quantitatively with those observed in explicit molecular dynamics simulations for all three solvent models. These results suggest that the local monomer–monomer interactions provide sufficient friction for the monomer dynamics to be diffusive on timescales relevant to changes in conformation. Factors such as structural ordering and dynamic hydrodynamic effects appear to have minimal influence on transition rates within the studied solvent densities.

1.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
23
,
58
(
2013
).
2.
S. A.
Hollingsworth
and
R. O.
Dror
,
Neuron
99
,
1129
(
2018
).
3.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
4.
D. E.
Shaw
,
M. M.
Deneroff
,
R. O.
Dror
,
J. S.
Kuskin
,
R. H.
Larson
,
J. K.
Salmon
,
C.
Young
,
B.
Batson
,
K. J.
Bowers
,
J. C.
Chao
,
M. P.
Eastwood
,
J.
Gagliardo
,
J. P.
Grossman
,
C. R.
Ho
,
D. J.
Ierardi
,
I.
Kolossváry
,
J. L.
Klepeis
,
T.
Layman
,
C.
McLeavey
,
M. A.
Moraes
,
R.
Mueller
,
E. C.
Priest
,
Y.
Shan
,
J.
Spengler
,
M.
Theobald
,
B.
Towles
, and
S. C.
Wang
,
Commun. ACM
51
,
91
(
2008
).
5.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
6.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
7.
W.
Wang
,
S.
Cao
,
L.
Zhu
, and
X.
Huang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1343
(
2018
).
8.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
9.
K. A.
Konovalov
,
I. C.
Unarta
,
S.
Cao
,
E. C.
Goonetilleke
, and
X.
Huang
,
JACS Au
1
,
1330
(
2021
).
10.
A.
Mardt
,
T.
Hempel
,
C.
Clementi
, and
F.
Noé
,
Nat. Commun.
13
,
7101
(
2022
).
11.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
12.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
13.
B.
Trendelkamp-Schroer
,
H.
Wu
,
F.
Paul
, and
F.
Noé
,
J. Chem. Phys.
143
,
174101
(
2015
).
14.
M.
von Kleist
,
C.
Schütte
, and
W.
Zhang
,
J. Stat. Phys.
170
,
809
(
2018
).
15.
D. J.
Sharpe
and
D. J.
Wales
,
Phys. Rev. E
104
,
015301
(
2021
).
16.
M.
Colberg
and
J.
Schofield
,
J. Chem. Phys.
157
,
125101
(
2022
).
17.
H. B.
Movahed
,
R.
van Zon
, and
J.
Schofield
,
J. Chem. Phys.
136
,
245103
(
2012
).
18.
J.
Schofield
and
H.
Bayat
,
J. Chem. Phys.
141
,
095101
(
2014
).
19.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
20.
A.
Schmidt
,
M.
Teeter
,
E.
Weckert
, and
V. S.
Lamzin
,
Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.
67
,
424
(
2011
).
21.
C.
Jelsch
,
M. M.
Teeter
,
V.
Lamzin
,
V.
Pichon-Pesme
,
R. H.
Blessing
, and
C.
Lecomte
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
3171
(
2000
).
22.
M. M.
Teeter
and
W. A.
Hendrickson
,
J. Mol. Biol.
127
,
219
(
1979
).
23.
24.
J. T.
Hynes
,
R.
Kapral
, and
M.
Weinberg
,
J. Chem. Phys.
70
,
1456
(
1979
).
25.
B. J.
Alder
and
T. E.
Wainwright
,
Phys. Rev. A
1
,
18
(
1970
).
26.
J.
Schofield
and
I.
Oppenheim
,
Physica A
187
,
210
(
1992
).
27.
W.
Sung
and
G.
Stell
,
J. Chem. Phys.
77
,
4636
(
1982
).
28.
C. M.
Silva
,
H.
Liu
, and
E. A.
Macedo
,
Ind. Eng. Chem. Res.
37
,
221
(
1998
).
29.
L.
Bocquet
,
J.
Piasecki
, and
J.-P.
Hansen
,
J. Stat. Phys.
76
,
505
(
1994
).
30.
L.
Bocquet
,
J.-P.
Hansen
, and
J.
Piasecki
,
J. Stat. Phys.
76
,
527
(
1994
).
31.
A. T.
Celebi
,
S. H.
Jamali
,
A.
Bardow
,
T. J. H.
Vlugt
, and
O. A.
Moultos
,
Mol. Simul.
47
,
831
(
2021
).
32.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
, “
Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
,” in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Berlin, Heidelberg
,
2009
), p.
1
.
33.
D.
Viduna
and
W. R.
Smith
,
Mol. Phys.
100
,
2903
(
2002
).
34.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
35.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
112
,
7260
(
2000
).
37.
J.
Schofield
,
P.
Inder
, and
R.
Kapral
,
J. Chem. Phys.
136
,
205101
(
2012
).
38.
T.
Ihle
and
D. M.
Kroll
,
Phys. Rev. E
63
,
020201
(
2001
).
39.
T.
Ihle
and
D. M.
Kroll
,
Phys. Rev. E
67
,
066705
(
2003
).
40.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
1965
).
41.
D.
Brune
and
S.
Kim
,
Proc. Natl. Acad. Sci. U. S. A.
90
,
3835
(
1993
).
42.
H.
Walderhaug
,
O.
Söderman
, and
D.
Topgaard
,
Prog. Nucl. Magn. Reson. Spectrosc.
56
,
406
(
2010
).
43.
R.
Evans
,
G.
Dal Poggetto
,
M.
Nilsson
, and
G. A.
Morris
,
Anal. Chem.
90
,
3987
(
2018
).
44.
B.
Tang
,
K.
Chong
,
W.
Massefski
, and
R.
Evans
,
J. Phys. Chem. B
126
,
5887
(
2022
).
45.
N.
Nemoto
,
Y.
Makita
,
Y.
Tsunashima
, and
M.
Kurata
,
Macromolecules
17
,
425
(
1984
).
46.
B.
Efron
, “
The jackknife, the bootstrap, and other resampling plans
,” in
CBMS-NSF Regional Conference Series in Applied Mathematics
(
Society for Industrial and Applied Mathematics
,
1982
).
47.
M.-C.
Bellissent-Funel
,
A.
Hassanali
,
M.
Havenith
,
R.
Henchman
,
P.
Pohl
,
F.
Sterpone
,
D.
van der Spoel
,
Y.
Xu
, and
A. E.
Garcia
,
Chem. Rev.
116
,
7673
(
2016
).
48.
P.
Prakash
,
A.
Sayyed-Ahmad
, and
A. A.
Gorfe
,
PLoS Comput. Biol.
8
,
e1002394
(
2012
).
49.
M.
Brylinski
,
L.
Konieczny
, and
I.
Roterman
,
Comput. Biol. Chem.
30
,
255
(
2006
).
50.
L. J.
Lapidus
,
S.
Yao
,
K. S.
McGarrity
,
D. E.
Hertzog
,
E.
Tubman
, and
O.
Bakajin
,
Biophys. J.
93
,
218
(
2007
).
51.
H.
Wirtz
,
S.
Schäfer
,
C.
Hoberg
,
K. M.
Reid
,
D. M.
Leitner
, and
M.
Havenith
,
Biochemistry
57
,
3650
(
2018
).
53.
P.
Mazur
and
I.
Oppenheim
,
Physica
50
,
241
(
1970
).
54.
S. V. G.
Menon
and
D. C.
Sahni
,
Phys. Rev. A
32
,
3832
(
1985
).
55.
P.
Kalinay
and
J. K.
Percus
,
J. Stat. Phys.
148
,
1135
(
2012
).
56.
D.
Ronis
,
D.
Bedeaux
, and
I.
Oppenheim
,
Physica A
90
,
487
(
1978
).
57.
B.
Robertson
,
J.
Schofield
, and
R.
Kapral
,
J. Chem. Phys.
160
,
014502
(
2024
).
58.
I.
Oppenheim
and
J.
McBride
,
Physica A
165
,
279
(
1990
).
59.
W.
Nadler
and
K.
Schulten
,
J. Chem. Phys.
82
,
151
(
1985
).
60.
A.
Szabo
,
J. Chem. Phys.
72
,
4620
(
1980
).
61.
W.
Nadler
and
K.
Schulten
,
Phys. Rev. Lett.
51
,
1712
(
1983
).
You do not currently have access to this content.