Chiral thin films showing electronic and plasmonic circular dichroism (CD) are intensively explored for optoelectronic applications. The most studied chiral organic films are the composites exhibiting a helical geometry, which often causes entanglement of circular optical properties with unwanted linear optical effects (linearly polarized absorption or refraction). This entanglement limits tunability and often translates to a complex optical response. This paper describes chiral films based on dark conglomerate, sponge-like, liquid crystal films, which go beyond the usual helical type geometry, waiving the problem of linear contributions to chiroptical electronic and plasmonic properties. First, we show that purely organic films exhibit high electronic CD and circular birefringence, as studied in detail using Mueller matrix polarimetry. Analogous linear properties are two orders of magnitude lower, highlighting the benefits of using the bi-isotropic dark conglomerate liquid crystal for chiroptical purposes. Next, we show that the liquid crystal can act as a template to guide the assembly of chemically compatible gold nanoparticles into 3D spiral-like assemblies. The Mueller matrix polarimetry measurements confirm that these composites exhibit both electronic and plasmonic circular dichroisms, while nanoparticle presence is not compromising the beneficial optical properties of the matrix.

1.
H.
Chen
,
W.
Wu
,
J.
Zhu
,
Z.
Yang
,
W.
Gong
,
W.
Gao
,
S. A.
Yang
, and
L.
Zhang
, “
Chiral phonon diode effect in chiral crystals
,”
Nano Lett.
22
(
4
),
1688
1693
(
2022
).
2.
D.
Liu
,
H.
Li
,
R.
Han
,
H.
Liu
, and
S.
Zang
, “
Multiple stimuli‐responsive luminescent chiral hybrid antimony chlorides for anti‐counterfeiting and encryption applications
,”
Angew. Chem.
135
,
36
(
2023
).
3.
P.
Lv
,
X.
Lu
,
L.
Wang
, and
W.
Feng
, “
Nanocellulose‐based functional materials: From chiral photonics to soft actuator and energy storage
,”
Adv. Funct. Mater.
31
(
45
),
2104991
(
2021
).
4.
Y.-H.
Kim
,
Y.
Zhai
,
H.
Lu
,
X.
Pan
,
C.
Xiao
,
E. A.
Gaulding
,
S. P.
Harvey
,
J. J.
Berry
,
Z. V.
Vardeny
,
J. M.
Luther
, and
M. C.
Beard
, “
Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode
,”
Science
371
,
1129
1133
(
2021
).
5.
Z.
Huang
,
Z.
He
,
B.
Ding
,
H.
Tian
, and
X.
Ma
, “
Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films
,”
Nat. Commun.
13
(
1
),
7841
(
2022
).
6.
X.
Wang
,
Q.
Wang
,
X.
Zhang
,
J.
Miao
,
J.
Cheng
,
T.
He
,
Y.
Li
,
Z.
Tang
, and
R.
Chen
, “
Circularly polarized light Source from self‐assembled hybrid nanoarchitecture
,”
Adv. Opt. Mater.
10
(
16
),
2200761
(
2022
).
7.
J.
Wade
,
J. N.
Hilfiker
,
J. R.
Brandt
,
L.
Liirò-Peluso
,
L.
Wan
,
X.
Shi
,
F.
Salerno
,
S. T. J.
Ryan
,
S.
Schöche
,
O.
Arteaga
,
T.
Jávorfi
,
G.
Siligardi
,
C.
Wang
,
D. B.
Amabilino
,
P. H.
Beton
,
A. J.
Campbell
, and
M. J.
Fuchter
, “
Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films
,”
Nat. Commun.
11
(
1
),
6137
(
2020
).
8.
M.
Morgenroth
,
M.
Scholz
,
T.
Lenzer
, and
K.
Oum
, “
Ultrafast UV–Vis transient absorption and circular dichroism spectroscopy of a polyfluorene copolymer showing large chiral induction
,”
J. Phys. Chem. C
124
(
18
),
10192
10200
(
2020
).
9.
D. K.
Yoon
,
Y.
Yi
,
Y.
Shen
,
E. D.
Korblova
,
D. M.
Walba
,
I. I.
Smalyukh
, and
N. A.
Clark
, “
Orientation of a helical nanofilament (B4) liquid-crystal phase: Topographic control of confinement, shear flow, and temperature gradients
,”
Adv. Mater.
23
(
17
),
1962
1967
(
2011
).
10.
A.
Abbasi Moud
, “
Chiral liquid crystalline properties of cellulose nanocrystals: Fundamentals and applications
,”
ACS Omega
7
(
35
),
30673
30699
(
2022
).
11.
G.
Zhang
,
X.
Cheng
,
Y.
Wang
, and
W.
Zhang
, “
Supramolecular chiral polymeric aggregates: Construction and applications
,”
Aggregate
4
(
1
),
e262
(
2023
).
12.
J. P.
Joseph
,
S. R.
Abraham
,
A.
Dutta
,
A.
Baev
,
M. T.
Swihart
, and
P. N.
Prasad
, “
Modulating the chiroptical response of chiral polymers with extended conjugation within the structural building blocks
,”
J. Phys. Chem. Lett.
13
(
39
),
9085
9095
(
2022
).
13.
Y.
Yao
,
T. J.
Ugras
,
T.
Meyer
,
M.
Dykes
,
D.
Wang
,
A.
Arbe
,
S.
Bals
,
B.
Kahr
, and
R. D.
Robinson
, “
Extracting pure circular dichroism from hierarchically structured CdS magic cluster films
,”
ACS Nano
16
(
12
),
20457
20469
(
2022
).
14.
A.
Taddeucci
,
F.
Zinna
,
G.
Siligardi
, and
L.
Di Bari
, “
Circularly polarized microscopy of thin films of chiral organic dyes
,”
Chem. Biomed. Imaging
1
(
5
),
471
478
(
2023
).
15.
N.
Berova
,
K.
Nakanishi
, and
R.
Woody
,
Circular Dichroism: Principles and Applications
, 2nd ed. (
Wiley-VCH
,
New York
,
2000
).
16.
A.
Rodger
and
B.
Nordén
,
Circular Dichroism and Linear Dichroism
(
Oxford University Press
,
Oxford, New York
,
1997
).
17.
M.
Salamończyk
,
N.
Vaupotič
,
D.
Pociecha
,
R.
Walker
,
J. M. D.
Storey
,
C. T.
Imrie
,
C.
Wang
,
C.
Zhu
, and
E.
Gorecka
, “
Multi-level chirality in liquid crystals formed by achiral molecules
,”
Nat. Commun.
10
,
1922
(
2019
).
18.
L. E.
Hough
,
H. T.
Jung
,
D.
Krüerke
,
M. S.
Heberling
,
M.
Nakata
,
C. D.
Jones
,
D.
Chen
,
D. R.
Link
,
J.
Zasadzinski
,
G.
Heppke
,
J. P.
Rabe
,
W.
Stocker
,
E.
Körblova
,
D. M.
Walba
,
M. A.
Glaser
, and
N. A.
Clark
, “
Helical nanofilament phases
,”
Science
325
(
5939
),
456
460
(
2009
).
19.
L.
Wang
,
A. M.
Urbas
, and
Q.
Li
, “
Nature-inspired emerging chiral liquid crystal nanostructures: From molecular self-assembly to DNA mesophase and nanocolloids
,”
Adv. Mater.
32
,
1801335
(
2018
).
20.
P.
Szustakiewicz
,
N.
Kowalska
,
D.
Grzelak
,
T.
Narushima
,
M.
Góra
,
M.
Bagiński
,
D.
Pociecha
,
H.
Okamoto
,
L. M.
Liz-Marzán
, and
W.
Lewandowski
, “
Supramolecular chirality synchronization in thin films of plasmonic nanocomposites
,”
ACS Nano
14
(
10
),
12918
12928
(
2020
).
21.
W.
Park
and
D. K.
Yoon
, “
Orientation control of helical nanofilament phase and its chiroptical applications
,”
Crystals
10
(
8
),
675
(
2020
).
22.
W.
Wu
and
M.
Pauly
, “
Chiral plasmonic nanostructures: Recent advances in their synthesis and applications
,”
Mater. Adv.
3
(
1
),
186
215
(
2022
).
23.
D.
Vila-Liarte
,
N. A.
Kotov
, and
L. M.
Liz-Marzán
, “
Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures
,”
Chem. Sci.
13
(
3
),
595
610
(
2022
).
24.
J.
Mendoza‐Carreño
,
P.
Molet
,
C.
Otero‐Martínez
,
M. I.
Alonso
,
L.
Polavarapu
, and
A.
Mihi
, “
Nanoimprinted 2D‐chiral perovskite nanocrystal metasurfaces for circularly polarized photoluminescence
,”
Adv. Mater.
35
,
2210477
(
2023
).
25.
D.
Château
,
S.
David
,
G.
Berginc
,
C.
Lopes
,
F.
Chaput
,
F.
Lerouge
,
A.
Désert
,
C.
Andraud
, and
S.
Parola
, “
Plasmonic bipyramidal Au nanoparticles enhance near-infrared nonlinear absorption of dyes confined in sol–gel materials: Implications for the safe utilization of lasers
,”
ACS Appl. Nano Mater.
5
(
3
),
3773
3780
(
2022
).
26.
M.
Bagiński
,
M.
Tupikowska
,
G.
González‐Rubio
,
M.
Wójcik
, and
W.
Lewandowski
, “
Shaping liquid crystals with gold nanoparticles: Helical assemblies with tunable and hierarchical structures via thin‐film cooperative interactions
,”
Adv. Mater.
32
(
1
),
1904581
(
2020
).
27.
D.
Grzelak
,
M.
Tupikowska
,
D.
Vila‐Liarte
,
D.
Beutel
,
M.
Bagiński
,
S.
Parzyszek
,
M.
Góra
,
C.
Rockstuhl
,
L. M.
Liz‐Marzán
, and
W.
Lewandowski
, “
Liquid crystal templated chiral plasmonic films with dynamic tunability and moldability
,”
Adv. Funct. Mater.
32
(
16
),
2111280
(
2022
).
28.
S.
Parzyszek
,
J.
Tessarolo
,
A.
Pedrazo-Tardajos
,
A. M.
Ortuño
,
M.
Bagiński
,
S.
Bals
,
G. H.
Clever
, and
W.
Lewandowski
, “
Tunable circularly polarized luminescence via chirality induction and energy transfer from organic films to semiconductor nanocrystals
,”
ACS Nano
16
,
18472
18482
(
2022
).
29.
M.
Lipok
,
P.
Obstarczyk
,
S.
Parzyszek
,
Y.
Wang
,
M.
Bagiński
,
T.
Buergi
,
W.
Lewandowski
, and
J.
Olesiak‐Bańska
, “
Circularly polarized luminescence from atomically precise gold nanoclusters helically assembled by liquid‐crystal template
,”
Adv. Opt. Mater.
11
(
3
),
2201984
(
2023
).
30.
L. E.
Hough
et al, “
Chiral isotropic liquids from achiral molecules
,”
Science
325
,
452
456
(
2009
).
31.
J. L.
Pezzaniti
, “
Mueller matrix imaging polarimetry
,”
Opt. Eng.
34
(
6
),
1558
(
1995
).
32.
R.
Hussain
,
T.
Jávorfi
, and
G.
Siligardi
, “
CD imaging at high spatial resolution at diamond B23 beamline: Evolution and applications
,”
Front. Chem.
9
,
616928
(
2021
).
33.
H.
Sasaki
,
Y.
Takanishi
,
J.
Yamamoto
, and
A.
Yoshizawa
, “
Achiral flexible liquid crystal trimers exhibiting chiral conglomerates
,”
trimers exhibiting chiral conglomerates
12
(
14
),
3331
3339
(
2016
).
34.
H.
Sasaki
,
Y.
Takanishi
,
J.
Yamamoto
and
A.
Yoshizawa
, “
Achiral flexible liquid crystal trimers exhibiting gyroid-like surfaces in chiral conglomerate phases
,”
Soft Matter
12
(
37
),
6521
6528
(
2017
).
35.
S. B. G.
Blanquer
,
M.
Werner
,
M.
Hannula
,
S.
Sharifi
,
G. P. R.
Lajoinie
,
D.
Eglin
,
J.
Hyttinen
,
A. A.
Poot
, and
D. W.
Grijpma
, “
Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds
,”
Biofabrication
9
(
2
),
025001
(
2017
).
36.
G.
Albano
et al, “
Chiroptical properties in thin films of π-conjugated systems
,”
Chem. Rev.
120
(
18
),
10145
10243
(
2020
).
37.
M.
Schulz
,
M.
Mack
,
O.
Kolloge
,
A.
Lutzen
, and
M.
Schiek
, “
Organic photodiodes from homochirall-proline derived squaraine compounds with strong circular dichroism
,”
Phys. Chem. Chem. Phys.
19
,
6996
7008
(
2017
).
38.
D.
Keller
and
C.
Bustamante
, “
Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism
,”
J. Chem. Phys.
84
,
2972
2980
(
1986
).
39.
V. A.
Kuznetsova
,
E.
Mates-Torres
,
N.
Prochukhan
,
M.
Marcastel
,
F.
Purcell-Milton
,
J.
O’Brien
,
A. K.
Visheratina
,
M.
Martinez-Carmona
,
Y.
Gromova
,
M.
Garcia-Melchor
, and
Y. K.
Gun’ko
, “
Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots
,”
ACS Nano
13
(
11
),
13560
13572
(
2019
).
40.
M.
Kurata
and
A.
Yoshizawa
, “
The formation of a chiral supramolecular structure acting as a template for chirality transfer
,”
Chem. Commun.
56
(
59
),
8289
8292
(
2020
).
41.
Y.
Zheng
,
X.
Zhong
,
Z.
Li
, and
Y.
Xia
, “
Successive, seed‐mediated growth for the synthesis of single‐crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm
,”
Part. Part. Syst. Charact.
31
,
266
273
(
2014
).
42.
G.
González-Rubio
,
V.
Kumar
,
P.
Llombart
,
P.
Díaz-Núñez
,
E.
Bladt
,
T.
Altantzis
,
S.
Bals
,
O.
Peña-Rodríguez
,
E. G.
Noya
,
L. G.
Macdowell
,
A.
Guerrero-Martínez
, and
L. M.
Liz-Marzán
, “
Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods
,”
ACS Nano
13
(
4
),
4424
4435
(
2019
).
43.
Y.
Chen
and
X.
Wang
, “
Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature
,”
Mater. Lett.
62
(
15
),
2215
2218
(
2008
).
44.
G.
Albano
,
M.
Górecki
,
G.
Pescitelli
,
L.
Di Bari
,
T.
Jávorfi
,
R.
Hussain
, and
G.
Siligardi
, “
Electronic circular dichroism imaging (CDi) maps local aggregation modes in thin films of chiral oligothiophenes
,”
New J. Chem.
43
(
36
),
14584
14593
(
2019
).

Supplementary Material

You do not currently have access to this content.