Diffusion of electrons over distances on the order of 100 μm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459–10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck–Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.

1.
D. J.
Richardson
, “
Bacterial respiration: A flexible process for a changing environment
,”
Microbiology
146
,
551
571
(
2000
).
2.
G.
Reguera
,
K. D.
McCarthy
,
T.
Mehta
,
J. S.
Nicoll
,
M. T.
Tuominen
, and
D. R.
Lovley
, “
Extracellular electron transfer via microbial nanowires
,”
Nature
435
,
1098
1101
(
2005
).
3.
R. M.
Snider
,
S. M.
Strycharz-Glaven
,
S. D.
Tsoi
,
J. S.
Erickson
, and
L. M.
Tender
, “
Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
15467
15472
(
2012
).
4.
M. D.
Yates
,
J. P.
Golden
,
J.
Roy
,
S. M.
Strycharz-Glaven
,
S.
Tsoi
,
J. S.
Erickson
,
M. Y.
El-Naggar
,
S.
Calabrese Barton
, and
L. M.
Tender
, “
Thermally activated long range electron transport in living biofilms
,”
Phys. Chem. Chem. Phys.
17
,
32564
32570
(
2015
).
5.
S.
Sure
,
M. L.
Ackland
,
A. J.
Torriero
,
A.
Adholeya
, and
M.
Kochar
, “
Microbial nanowires: An electrifying tale
,”
Microbiology
162
,
2017
2028
(
2016
).
6.
S.
Rengaraj
,
R.
Haddad
,
E.
Lojou
,
N.
Duraffourg
,
M.
Holzinger
,
A.
Le Goff
, and
V.
Forge
, “
Interprotein electron transfer between FeS-protein nanowires and oxygen-tolerant NiFe hydrogenase
,”
Angew. Chem., Int. Ed.
56
,
7774
7778
(
2017
).
7.
D. R.
Lovley
and
D. J. F.
Walker
, “
Geobacter protein nanowires
,”
Front. Microbiol.
10
,
2078
(
2019
).
8.
M. J.
Edwards
,
D. J.
Richardson
,
C. M.
Paquete
, and
T. A.
Clarke
, “
Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria
,”
Protein Sci.
29
,
830
842
(
2020
).
9.
S. E.
Yalcin
and
N. S.
Malvankar
, “
The blind men and the filament: Understanding structures and functions of microbial nanowires
,”
Curr. Opin. Chem. Biol.
59
,
193
201
(
2020
).
10.
J.
Huang
,
J.
Zarzycki
,
M. R.
Gunner
,
W. W.
Parson
,
J. F.
Kern
,
J.
Yano
,
D. C.
Ducat
, and
D. M.
Kramer
, “
Mesoscopic to macroscopic electron transfer by hopping in a crystal network of cytochromes
,”
J. Am. Chem. Soc.
142
,
10459
10467
(
2020
).
11.
W. W.
Parson
, “
Reorganization energies, entropies, and free energy surfaces for electron transfer
,”
J. Phys. Chem. B
125
,
7940
7945
(
2021
).
12.
W. W.
Parson
and
C.
Burda
, “
Calculated solvent reorganization entropies, free energies, and fluctuations of the energy gaps for intramolecular electron transfer and excitation of the solvatochromic dye B30
,”
J. Chem. Phys.
159
,
154505
(
2023
).
13.
M. J.
Guberman-Pfeffer
, “
Assessing thermal response of redox conduction for anti-arrhenius kinetics in a microbial cytochrome nanowire
,”
J. Phys. Chem. B
126
,
10083
10097
(
2022
).
14.
E.
Harada
,
J.
Kumagai
,
K.
Ozawa
,
S.
Imabayashi
,
A. S.
Tsapin
,
K. H.
Nealson
,
T. E.
Meyer
,
M. A.
Cusanovich
, and
H.
Akutsu
, “
A directional electron transfer regulator based on heme-chain architecture in the small tetraheme cytochrome c from Shewanella oneidensis
,”
FEBS Lett.
532
,
333
337
(
2002
).
15.
B. M.
Fonseca
,
I. H.
Saraiva
,
C. M.
Paquete
,
C. M.
Soares
,
I.
Pacheco
,
C. A.
Salgueiro
, and
R. O.
Louro
, “
The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes
,”
J. Biol. Inorg. Chem.
14
,
375
385
(
2009
).
16.
M.
Kulke
,
D.
Olson
,
J.
Huang
,
D. M.
Kramer
, and
J.
Vermaas
, “
Long-range electron transport rates depend on wire dimensions in cytochrome nanowires
,”
Small
19
,
2304013
(
2023
).
17.
A. W.
McMillan
,
B. L.
Kier
,
I.
Shu
,
A.
Byrne
,
N. H.
Andersen
, and
W.
Parson
, “
Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: Measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations
,”
J. Phys. Chem. B
117
,
1790
1809
(
2013
).
18.
W. W.
Parson
, “
Generalizing the Marcus equation
,”
J. Chem. Phys.
152
,
184106
(
2020
).
19.
R. A.
Marcus
, “
Free energy of nonequilibrium polarization systems. III. Statistical mechanics of homogeneous and electrode systems
,”
J. Chem. Phys.
39
,
1734
1740
(
1963
).
20.
R. A.
Marcus
, “
On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions
,”
J. Chem. Phys.
43
,
679
701
(
1965
).
21.
R. A.
Marcus
and
N.
Sutin
, “
Electron transfers in chemistry and biology
,”
Biochim. Biophys. Acta, Rev. Bioenerg.
811
,
265
322
(
1985
).
22.
D. V.
Matyushov
, “
Energetics of electron-transfer reactions in soft condensed media
,”
Acc. Chem. Res.
40
,
294
301
(
2007
).
23.
S.
Seyedi
and
D. V.
Matyushov
, “
Termination of biological function at low temperatures: Glass or structural transition
,”
J. Phys. Chem. Lett.
9
,
2359
2366
(
2018
).
24.
D.
Leys
,
T. E.
Meyer
,
A. S.
Tsapin
,
K. H.
Nealson
,
M. A.
Cusanovich
, and
J. J.
Van Beeumen
, “
Crystal structures at atomic resolution reveal the novel concept of “electron-harvesting” as a role for the small tetraheme cytochrome c
,”
J. Biol. Chem.
277
,
35703
35711
(
2002
).
25.
G.
King
and
A.
Warshel
, “
A surface constrained all-atom solvent model for effective simulations of polar solutions
,”
J. Chem. Phys.
91
,
3647
3661
(
1989
).
26.
F. S.
Lee
,
Z. T.
Chu
, and
A.
Warshel
, “
Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs
,”
J. Comput. Chem.
14
,
161
185
(
1993
).
27.
W. W.
Parson
and
A.
Warshel
, in
Biophysical Techniques in Photosynthesis
, edited by
T. J.
Aartsma
and
J.
Matysik
(
Springer
,
Dordrecht, The Netherlands
,
2008
), pp.
401
420
.
28.
A. S. F.
Oliveira
,
V. H.
Teixeira
,
A. M.
Baptista
, and
C. M.
Soares
, “
Reorganization and conformational changes in the reduction of tetraheme cytochromes
,”
Biophys. J.
89
,
3919
3930
(
2005
).
29.
X.
Jiang
,
Z.
Futera
,
M. E.
Ali
,
F.
Gajdos
,
G. F.
vonRudorff
,
A.
Carof
,
M.
Breuer
, and
J.
Blumberger
, “
Cysteine linkages accelerate electron flow through tetra-heme protein STC
,”
J. Am. Chem. Soc.
139
,
17237
17240
(
2017
).
30.
D. R.
Martin
and
D. V.
Matyushov
, “
Non-Gaussian statistics and nanosecond dynamics of electrostatic fluctuations affecting optical transitions in proteins
,”
J. Phys. Chem. B
116
,
10294
10300
(
2012
).
31.
Z.
Futera
,
X.
Jiang
, and
J.
Blumberger
, “
Ergodicity breaking in thermal biological electron transfer? Cytochrome c revisited II
,”
J. Phys. Chem. B
124
,
3336
3342
(
2020
).
32.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
33.
A.
Warshel
,
S. T.
Russell
, and
A. K.
Churg
, “
Macroscopic models for studies of electrostatic interactions in proteins: Limitations and applicability
,”
Proc. Natl. Acad. Sci. U. S. A.
81
,
4785
4789
(
1984
).
34.
E. T.
Johnson
and
W. W.
Parson
, “
Electrostatic interactions in an integral membrane protein
,”
Biochemistry
41
,
6483
6494
(
2002
).
35.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
, and
W. W.
Parson
, “
Modeling electrostatic effects in proteins
,”
Biochim. Biophys. Acta, Proteins Proteomics
1764
,
1647
1676
(
2006
).
36.
E. L.
Rothery
,
C. G.
Mowat
,
C. S.
Miles
,
S.
Mott
,
M. D.
Walkinshaw
,
G. A.
Reid
, and
S. K.
Chapman
, “
Probing domain mobility in a flavocytochrome
,”
Biochemistry
43
,
4983
4989
(
2004
).
37.
I.
Bento
,
P. M.
Matias
,
A. M.
Baptista
,
P. N.
Da Costa
,
W. M. A. M.
van Dongen
,
L. M.
Saraiva
,
T. R.
Schneider
,
C. M.
Soares
, and
M. A.
Carrondo
, “
Molecular basis for redox Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: Crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6
,”
Proteins: Struct., Funct., Bioinf.
54
,
135
152
(
2004
).
38.
M. V.
Pattarkine
,
J. J.
Tanner
,
C. A.
Bottoms
,
Y. H.
Lee
, and
J. D.
Wall
, “
Desulfovibrio desulfuricans G20 tetraheme cytochrome structure at 1.5 Å and cytochrome interaction with metal complexes
,”
J. Mol. Biol.
358
,
1314
1327
(
2006
).
39.
Y.
Takayama
,
N. D.
Werbeck
,
H.
Komori
,
K.
Morita
,
K.
Ozawa
,
Y.
Higuchi
, and
H.
Akutsu
, “
Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3
,”
Biochemistry
47
,
9405
9415
(
2008
).
40.
F.
Wang
,
Y.
Gu
,
J. P.
O’Brien
,
S. M.
Yi
,
S. E.
Yalcin
,
V.
Srikanth
,
C.
Shen
,
D.
Vu
,
N. L.
Ing
,
A. L.
Hochbaum
,
E. H.
Egelman
, and
N. S.
Malvankar
, “
Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers
,”
Cell
177
,
361
369.e10
(
2019
).
41.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
GAUSSIAN 16, Revision B.01
,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
42.
D. M. A.
Smith
,
M.
Dupuis
,
E. R.
Vorpagel
, and
T. P.
Straatsma
, “
Characterization of electronic structure and properties of a bis(histidine) heme model complex
,”
J. Am. Chem. Soc.
125
,
2711
2717
(
2003
).
43.
R.
Borrelli
and
A.
Peluso
, “
Dynamics of radiationless transitions in large molecular systems: A Franck–Condon-based method accounting for displacements and rotations of all the normal coordinates
,”
J. Chem. Phys.
119
,
8437
8448
(
2003
).
44.
R.
Borrelli
,
A.
Capobianco
, and
A.
Peluso
, “
Generating function approach to the calculation of spectral band shapes of free-base chlorin including Duschinsky and Herzberg-Teller effects
,”
J. Phys. Chem. A
116
,
9934
9940
(
2012
).
45.
R.
Borrelli
,
A.
Capobianco
, and
A.
Peluso
, “
Franck–Condon factors. Computational approaches and recent developments
,”
Can. J. Chem.
91
,
495
505
(
2013
).
46.
W. W.
Parson
, “
Vibrational relaxations and dephasing in electron-transfer reactions
,”
J. Phys. Chem. B
120
,
11412
11418
(
2016
).
47.
W. W.
Parson
, “
Effects of free energy and solvent on rates of intramolecular electron transfer in organic radical anions
,”
J. Phys. Chem. A
121
,
7297
7306
(
2017
).
48.
W. W.
Parson
, “
Electron-transfer dynamics in a Zn-porphyrin-quinone cyclophane: Effects of solvent, vibrational relaxations, and conical intersections
,”
J. Phys. Chem. B
122
,
3854
3863
(
2018
).
49.
W. W.
Parson
, “
Temperature dependence of the rate of intramolecular electron transfer
,”
J. Phys. Chem. B
122
,
8824
8833
(
2018
).
50.
D. N.
Beratan
,
J. N.
Betts
, and
J. N.
Onuchic
, “
Protein electron transfer rates set by the bridging secondary and tertiary structure
,”
Science
252
,
1285
1288
(
1991
).
51.
D. N.
Beratan
,
J. N.
Onuchic
,
J. R.
Winkler
, and
H. B.
Gray
, “
Electron-tunneling pathways in oroteins
,”
Science
258
,
1740
1741
(
1992
).
52.
D. N.
Beratan
and
J. N.
Onuchic
, in
Protein Electron Transfer
, edited by
D. S.
Bendall
(
BIOS Scientific Publishers
,
Oxford
,
1996
), pp.
23
42
.
53.
A.
de la Lande
and
D. R.
Salahub
, “
Derivation of interpretative models for long range electron transfer from constrained density functional theory
,”
J. Mol. Struct.: THEOCHEM
943
,
115
120
(
2010
).
54.
K.
Echelberry
,
H.
Burda
,
P.
Willis
,
W. W.
Parson
, and
C.
Burda
, “
Temperature-dependent solvent reorganization entropies, free energies, and transition dipole strengths for the photoexcitation of Reichardt’s dye B30
,”
J. Chem. Phys.
159
,
154506
(
2023
).
55.
T. J.
Park
, “
Kinetics of reversible consecutive reactions
,”
Bull. Korean Chem. Soc.
34
,
243
245
(
2013
).
56.
J. H.
van Wonderen
,
C. R.
Hall
,
X.
Jiang
,
K.
Adamczyk
,
A.
Carof
,
I.
Heisler
,
S. E. H.
Piper
,
T. A.
Clarke
,
N. J.
Watmough
,
I. V.
Sazanovich
,
M.
Towrie
,
S. R.
Meech
,
J.
Blumberger
, and
J. N.
Butt
, “
Ultrafast light-driven electron transfer in a Ru(II)tris(bipyridine)-labeled multiheme cytochrome
,”
J. Am. Chem. Soc.
141
,
15190
15200
(
2019
).
57.
M. A.
Marcos
,
D.
Cabaleiro
,
M. J. G.
Guimarey
,
M. J. P.
Comunas
,
L.
Fedele
,
J.
Fernandez
, and
L.
Lugo
, “
PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets
,”
Nanomaterials
8
,
16
(
2017
).
58.
M. C. M.
Sequeira
,
M. F. V.
Pereira
,
H. M. N. T.
Avelino
,
F. J. P.
Caetano
, and
J. M. N. A.
Fareleira
, “
Viscosity measurements of poly(ethyleneglycol) 400 [PEG 400] at temperatures from 293 K to 348 K and at pressures up to 50 MPa using the vibrating wire technique
,”
Fluid Phase Equilib.
496
,
7
16
(
2019
).
59.
K.
Garg
,
M.
Ghosh
,
T.
Eliash
,
J. H.
van Wonderen
,
J. N.
Butt
,
L.
Shi
,
X.
Jiang
,
F.
Zdenek
,
J.
Blumberger
,
I.
Pecht
,
M.
Sheves
, and
D.
Cahen
, “
Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes
,”
Chem. Sci.
9
,
7304
7310
(
2018
).
60.
Z.
Futera
,
I.
Ide
,
B.
Kayser
,
K.
Garg
,
X.
Jiang
,
J. H.
van Wonderen
,
J. N.
Butt
,
H.
Ishii
,
I.
Pecht
,
M.
Sheves
,
D.
Cahen
, and
J.
Blumberger
, “
Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins
,”
J. Phys. Chem. Lett.
11
,
9766
9774
(
2020
).
61.
J.
Ulstrup
and
J.
Jortner
, “
The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions
,”
J. Chem. Phys.
63
,
4358
4368
(
1975
).
62.
P. J.
Dahl
,
S. M.
Yi
,
Y.
Gu
,
A.
Acharya
,
C.
Shipps
,
J.
Neu
,
J. P.
O’Brien
,
U. N.
Morzan
,
S.
Chaudhuri
,
M. J.
Guberman-Pfeffer
,
D.
Vu
,
S. E.
Yalcin
,
V. S.
Batista
, and
N. S.
Malvankar
, “
A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks
,”
Sci. Adv.
8
(
19
),
eabm7193
(
2022
).

Supplementary Material

You do not currently have access to this content.