We propose a Brownian ratchet for the unidirectional transport of stimuli-responsive molecules confined in a series of asymmetric geometries. It relies on repetitive cycles of aggregation and dispersion, which cause significant changes in molecular distribution within the confining geometry and enable the Brownian motion of the molecules to be ratcheted in a specific direction. To demonstrate the feasibility of the proposed Brownian ratchet, we conducted Brownian dynamics simulations where stimuli-responsive molecules were repeatedly aggregated and dispersed in a series of truncated conical tubes by altering intermolecular interactions. These simulations demonstrated the unidirectional transport of the molecules, indicating the efficacy of the proposed Brownian ratchet. Furthermore, we found that it becomes more effective with higher concentrations of molecules. This study suggests that, through the deliberate control of molecular assembly and disassembly by stimuli-responsive intermolecular interactions, it is possible to achieve directional and controlled molecular transport in various nanoscale applications.

1.
R. D.
Astumian
, “
Thermodynamics and kinetics of a Brownian motor
,”
Science
276
,
917
922
(
1997
).
2.
P.
Reimann
, “
Brownian motors: Noisy transport far from equilibrium
,”
Phys. Rep.
361
,
57
265
(
2002
).
3.
P.
Hänggi
and
F.
Marchesoni
, “
Artificial Brownian motors: Controlling transport on the nanoscale
,”
Rev. Mod. Phys.
81
,
387
442
(
2009
).
4.
S.
Erbas-Cakmak
,
D. A.
Leigh
,
C. T.
McTernan
, and
A. L.
Nussbaumer
, “
Artificial molecular machines
,”
Chem. Rev.
115
,
10081
10206
(
2015
).
5.
J.
Rousselet
,
L.
Salome
,
A.
Ajdari
, and
J.
Prostt
, “
Directional motion of Brownian particles induced by a periodic asymmetric potential
,”
Nature
370
,
446
447
(
1994
).
6.
L. P.
Faucheux
,
L. S.
Bourdieu
,
P. D.
Kaplan
, and
A. J.
Libchaber
, “
Optical thermal ratchet
,”
Phys. Rev. Lett.
74
,
1504
(
1995
).
7.
J. S.
Bader
,
R. W.
Hammond
,
S. A.
Henck
,
M. W.
Deem
,
G. A.
McDermott
,
J. M.
Bustillo
,
J. W.
Simpson
,
G. T.
Mulhern
, and
J. M.
Rothberg
, “
DNA transport by a micromachined Brownian ratchet device
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
13165
13169
(
1999
).
8.
C.
Marquet
,
A.
Buguin
,
L.
Talini
, and
P.
Silberzan
, “
Rectified motion of colloids in asymmetrically structured channels
,”
Phys. Rev. Lett.
88
,
168301
(
2002
).
9.
S.
Matthias
and
F.
Müller
, “
Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets
,”
Nature
424
,
53
57
(
2003
).
10.
S.-H.
Lee
,
K.
Ladavac
,
M.
Polin
, and
D. G.
Grier
, “
Observation of flux reversal in a symmetric optical thermal ratchet
,”
Phys. Rev. Lett.
94
,
110601
(
2005
).
11.
L.
Bogunovic
,
R.
Eichhorn
,
J.
Regtmeier
,
D.
Anselmetti
, and
P.
Reimann
, “
Particle sorting by a structured microfluidic ratchet device with tunable selectivity: Theory and experiment
,”
Soft Matter
8
,
3900
3907
(
2012
).
12.
D.
Reguera
,
A.
Luque
,
P. S.
Burada
,
G.
Schmid
,
J. M.
Rubí
, and
P.
Hänggi
, “
Entropic splitter for particle separation
,”
Phys. Rev. Lett.
108
,
020604
(
2012
).
13.
N.
Arai
,
K.
Yasuoka
,
T.
Koishi
,
T.
Ebisuzaki
, and
X. C.
Zeng
, “
Understanding molecular motor walking along a microtubule: A themosensitive asymmetric Brownian motor driven by bubble formation
,”
J. Am. Chem. Soc.
135
,
8616
8624
(
2013
).
14.
M.
Kowalik
and
K. J. M.
Bishop
, “
Ratcheted electrophoresis of Brownian particles
,”
Appl. Phys. Lett.
108
,
203103
(
2016
).
15.
S.-H.
Wu
,
N.
Huang
,
E.
Jaquay
, and
M. L.
Povinelli
, “
Near-field, on-chip optical Brownian ratchets
,”
Nano Lett.
16
,
5261
5266
(
2016
).
16.
M. J.
Skaug
,
C.
Schwemmer
,
S.
Fringes
,
C. D.
Rawlings
, and
A. W.
Knoll
, “
Nanofluidic rocking Brownian motors
,”
Science
359
,
1505
1508
(
2018
).
17.
S.
Park
,
J.
Song
, and
J. S.
Kim
, “
In silico construction of a flexibility-based DNA Brownian ratchet for directional nanoparticle delivery
,”
Sci. Adv.
5
,
eaav4943
(
2019
).
18.
I.
Oh
,
J.
Song
,
H. R.
Hyun
,
S. H.
Lee
, and
J. S.
Kim
, “
Brownian ratchet for directional nanoparticle transport by repetitive stretch-relaxation of DNA
,”
Phys. Rev. E
106
,
054117
(
2022
).
19.
L.
Qiao
,
K.
Szuttor
,
C.
Holm
, and
G. W.
Slater
, “
Ratcheting charged polymers through symmetric nanopores using pulsed fields: Designing a low pass filter for concentrating polyelectrolytes
,”
Nano Lett.
23
,
1343
1349
(
2023
).
20.
R.
Yoshida
,
K.
Uchida
,
Y.
Kaneko
,
K.
Sakai
,
A.
Kikuchi
,
Y.
Sakurai
, and
T.
Okano
, “
Comb-type grafted hydrogels with rapid deswelling response to temperature changes
,”
Nature
374
,
240
242
(
1995
).
21.
D.
Schmaljohann
, “
Thermo- and pH-responsive polymers in drug delivery
,”
Adv. Drug Delivery Rev.
58
,
1655
1670
(
2006
).
22.
R.
Klajn
,
K. J. M.
Bishop
, and
B. A.
Grzybowski
, “
Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
10305
10309
(
2007
).
23.
I.
Cobo
,
M.
Li
,
B. S.
Sumerlin
, and
S.
Perrier
, “
Smart hybrid materials by conjugation of responsive polymers to biomacromolecules
,”
Nat. Mater.
14
,
143
159
(
2015
).
24.
F.
Li
,
J.
Lu
,
X.
Kong
,
T.
Hyeon
, and
D.
Ling
, “
Dynamic nanoparticle assemblies for biomedical applications
,”
Adv. Mater.
29
,
1605897
(
2017
).
25.
J.
Michalska-Walkowiak
,
B.
Förster
,
S.
Hauschild
, and
S.
Förster
, “
Bistability, remanence, read/write-memory, and logic gate function via a stimuli-responsive polymer
,”
Adv. Mater.
34
,
2108833
(
2022
).
26.
T.
Ding
,
V. K.
Valev
,
A. R.
Salmon
,
C. J.
Forman
,
S. K.
Smoukov
,
O. A.
Scherman
,
D.
Frenkel
, and
J. J.
Baumberg
, “
Light-induced actuating nanotransducers
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
5503
5507
(
2016
).
27.
S. T.
Jones
,
Z.
Walsh-Korb
,
S. J.
Barrow
,
S. L.
Henderson
,
J.
del Barrio
, and
O. A.
Scherman
, “
The importance of excess poly(N-isopropylacrylamide) for the aggregation of poly(N-isopropylacrylamide)-coated gold nanoparticles
,”
ACS Nano
10
,
3158
3165
(
2016
).
28.
M.
Liu
,
M.
Yang
,
X.
Wan
,
Z.
Tang
,
L.
Jiang
, and
S.
Wang
, “
From nanoscopic to macroscopic materials by stimuli-responsive nanoparticle aggregation
,”
Adv. Mater.
35
,
2208995
(
2023
).
29.
E. J.
Cho
and
J. S.
Kim
, “
Crowding-induced phase separation of Lennard-Jones particles: Implications to nuclear structures in a biological cell
,”
J. Phys. Chem. B
116
,
3874
3879
(
2012
).
30.
J.
Jung
,
J.
Lee
, and
J. S.
Kim
, “
Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations
,”
Chem. Phys.
449
,
1
9
(
2015
).
31.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
32.
J.
Schilling
,
F.
Müller
,
S.
Matthias
,
R. B.
Wehrspohn
,
U.
Gösele
, and
K.
Busch
, “
Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter
,”
Appl. Phys. Lett.
78
,
1180
1182
(
2001
).

Supplementary Material

You do not currently have access to this content.