Poly(ethylene oxide) (PEO) is a well-known biocompatible polymer and has widely been used for medical applications. Recently, we have investigated the dynamic behavior of hydration water in the vicinity of PEO chains at physiological temperature and shown the presence of slow water with diffusion coefficient one order of magnitude less than that of bulk water. This could be evidence for the intermediate water that is critical for biocompatibility; however, its detailed dynamical features were not established. In this article, we analyze the quasi-elastic neutron scattering from hydration water through mode distribution analysis and present a microscopic picture of hydration water as well as its relation to cold crystallization.

1.
T.
Tsuruta
, “
Contemporary topics in polymeric materials for biomedical applications
,”
Adv. Polym. Sci.
126
,
1
(
1996
).
2.
Advances in Polymeric Biomaterials Science
, edited by
T.
Akaike
,
T.
Okano
,
M.
Akashi
,
M.
Terano
, and
N.
Yui
(
CMC Co., Ltd.
,
Tokyo
,
1997
).
3.
D.
Severian
,
Polymeric Biomaterials
(
Marcel Dekker
,
New York
,
2002
).
4.
B. D.
Ratner
,
A. S.
Hoffman
,
F. J.
Schoen
, and
J. E.
Lemons
,
Biomaterials Science: An Introduction to Materials in Medicine
(
Academic Press
,
London
,
2004
).
5.
M.
Tanaka
,
T.
Motomura
,
N.
Ishii
,
K.
Shimura
,
M.
Onishi
,
A.
Mochizuki
, and
T.
Hatakeyama
, “
Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA)
,”
Polym. Int.
49
,
1709
1713
(
2000
).
6.
M.
Tanaka
,
T.
Hayashi
, and
S.
Morita
, “
The roles of water molecules at the biointerface of medical polymers
,”
Polym. J.
45
,
701
710
(
2013
).
7.
T.
Hatakeyma
,
H.
Kasuga
,
M.
Tanaka
, and
H.
Hatakeyama
, “
Cold crystallization of poly(ethylene glycol)–water systems
,”
Thermochim. Acta
465
,
59
(
2007
).
8.
M.
Tanaka
,
K.
Sato
,
E.
Kitakami
,
S.
Kobayashi
,
T.
Hoshiba
, and
K.
Fukushima
, “
Design of biocompatible and biodegradable polymers based on intermediate water concept
,”
Polym. J.
47
,
114
(
2015
).
9.
M.
Tanaka
and
A.
Mochizuki
, “
Effect of water structure on blood compatibility—Thermal analysis of water in poly(meth)acrylate
,”
J. Biomed. Mater. Res., Part A
68A
,
684
(
2004
).
10.
S.
Morita
,
M.
Tanaka
, and
Y.
Ozaki
, “
Time-resolved in situ ATR-IR observations of the process of sorption of water into a poly(2-methoxyethyl acrylate) film
,”
Langmuir
23
,
3750
3761
(
2007
).
11.
Y.
Miwa
,
H.
Ishida
,
H.
Saitô
,
M.
Tanaka
, and
A.
Mochizuki
, “
Network structures and dynamics of dry and swollen poly(acrylate)s. Characterization of high- and low-frequency motions as revealed by suppressed or recovered intensities (SRI) analysis of 13C NMR
,”
Polymer
50
,
6091
6099
(
2009
).
12.
T.
Tsuruta
, “
On the role of water molecules in the interface between biological systems and polymers
,”
J. Biomater. Sci., Polym. Ed.
21
,
1831
1848
(
2010
).
13.
M.
Bée
,
Quasielastic Neutron Scattering
(
Adam Hilger
,
Bristol, England
,
1988
).
14.
T.
Yamada
,
N.
Takahashi
,
T.
Tominaga
,
S.-i.
Takata
, and
H.
Seto
, “
Dynamical behavior of hydration water molecules between phospholipid membranes
,”
J. Phys. Chem. B
121
,
8322
8329
(
2017
).
15.
H.
Seto
and
T.
Yamada
, “
Quasi-elastic neutron scattering study of the effects of metal cations on the hydration water between phospholipid bilayers
,”
Appl. Phys. Lett.
116
,
133701
(
2020
).
16.
Y.
Fujii
,
T.
Tominaga
,
D.
Murakami
,
M.
Tanaka
, and
H.
Seto
, “
Dynamics of hydration water and PMMA chains in PMMA networks
,”
Front. Chem.
29
,
728738
(
2021
).
17.
M.
Nagao
and
H.
Seto
, “
Neutron scattering studies on dynamics of lipid membranes
,”
Biophys. Rev.
4
,
021306
(
2023
).
18.
M. K.
Rahman
,
T.
Yamada
,
N. L.
Yamada
,
M.
Hishida
,
Y.
Higuchi
, and
H.
Seto
, “
Quasi-elastic neutron scattering reveals the relationship between the dynamical behavior of phospholipid headgroups and hydration water
,”
Struct. Dyn.
10
,
044701
(
2023
).
19.
L.
Zheng
,
Z.
Liu
,
Q.
Zhang
,
S.
Li
,
J.
Huang
,
L.
Zhang
,
B.
Zan
,
M.
Tyagi
,
H.
Cheng
,
T.
Zuo
,
V. G.
Sakai
,
T.
Yamada
,
C.
Yang
,
P.
Tan
,
F.
Jiang
,
H.
Chen
,
W.
Zhuang
, and
L.
Hong
, “
Universal dynamical onset in water at distinct material interfaces
,”
Chem. Sci.
13
,
4341
4351
(
2022
).
20.
Poly(Ethylene Glycol) Chemistry
, edited by
J. M.
Harris
(
Springer
,
New York
,
1992
).
21.
S.
Sakata
,
Y.
Inoue
, and
K.
Ishihara
, “
Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces
,”
Langmuir
31
,
3108
3114
(
2015
).
22.
J.
Ladd
,
Z.
Zhang
,
S.
Chen
,
J. C.
Hower
, and
S.
Jiang
, “
Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma
,”
Biomacromolecules
9
,
1357
1361
(
2008
).
23.
Y.
Nagasaki
, “
Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance
,”
Polym. J.
43
,
949
958
(
2011
).
24.
O.
Borodin
,
F.
Trouw
,
D.
Bedrov
, and
G. D.
Smith
, “
Temperature dependence of water dynamics in poly(ethylene oxide)/water solutions from molecular dynamics simulations and quasielastic neutron scattering experiments
,”
J. Phys. Chem. B
106
,
5184
5193
(
2002
).
25.
A. C.
Barnes
,
T. W. N.
Bieze
,
J. E.
Enderby
, and
J. C.
Leyte
, “
Dynamics of water in the poly(ethylene oxide) hydration shell: A quasi elastic neutron-scattering study
,”
J. Phys. Chem.
98
,
11527
11532
(
1994
).
26.
T. W. N.
Bieze
,
A. C.
Barnes
,
C. J. M.
Huige
,
J. E.
Enderby
, and
J. C.
Leyte
, “
Distribution of water around poly(ethylene oxide): A neutron diffraction study
,”
J. Phys. Chem.
98
,
6568
6576
(
1994
).
27.
U.
Dahlborg
and
E.
Braun
, “
Molecular motion of polyethylene oxide in dilute aqueous and non-aqueous solutions
,”
Phys. Scr.
14
,
253
256
(
1976
).
28.
U.
Dahlborg
,
V.
Dimic
, and
B.
Cvikl
, “
Molecular motions in poly (ethylene oxide) solutions
,”
Phys. Scr.
37
,
93
101
(
1988
).
29.
A.
Maconnachie
,
P.
Vasudevan
, and
G.
Allen
, “
Molecular dynamics of poly(ethylene oxide) in concentrated solution
,”
Polymer
19
,
33
38
(
1978
).
30.
V.
Crupi
,
M. P.
Jannelli
,
S.
Magazú
,
G.
Maisano
,
D.
Majolino
,
P.
Migliardo
, and
C.
Vasi
, “
Neutron scattering and compressibility measurements for the study of hydration effects on polymeric aqueous solutions
,”
Il Nuovo Cimento D
16
,
809
816
(
1994
).
31.
V.
Crupi
,
S.
Magazú
,
D.
Majolino
,
P.
Migliardo
,
U.
Wanderlingh
, and
W. W.
Kagunya
, “
Incoherent quasi-elastic neutron scattering in water-PEG solutions
,”
Physica B
241-243
,
979
981
(
1997
), part of Special Issue: Proceedings of the International Conference on Neutron Scattering.
32.
Y.
Li
,
Z.
Han
,
C.
Ma
,
L.
Hong
,
Y.
Ding
,
Y.
Chen
,
J.
Zhao
,
D.
Liu
,
G.
Sun
,
T.
Zuo
,
H.
Cheng
, and
C. C.
Han
, “
Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol)
,”
Struct. Dyn.
9
,
054901
(
2022
).
33.
T.
Tominaga
,
M.
Hishida
,
D.
Murakami
,
Y.
Fujii
,
M.
Tanaka
, and
H.
Seto
, “
Experimental evidence of slow mode water in the vicinity of poly(ethylene oxide) at physiological temperature
,”
J. Phys. Chem. B
126
,
1758
1767
(
2022
).
34.
T.
Kikuchi
,
K.
Nakajima
,
S.
Ohira-Kawamura
,
Y.
Inamura
,
O.
Yamamuro
,
M.
Kofu
,
Y.
Kawakita
,
K.
Suzuya
,
M.
Nakamura
, and
M.
Arai
, “
Mode-distribution analysis of quasielastic neutron scattering and application to liquid water
,”
Phys. Rev. E
87
,
062314
(
2013
).
35.
T.
Kikuchi
,
Y.
Kawakita
,
K.
Nakajima
,
S.
Ohira-Kawamura
, and
Y.
Inamura
, “
Overall picture and details of diffusion dynamics for liquid benzene by quasielastic neutron scattering and mode distribution analysis
,”
J. Mol. Liq.
385
,
121868
(
2023
).
36.
T.
Tominaga
,
M.
Sahara
,
Y.
Kawakita
,
H.
Nakagawa
, and
T.
Yamada
, “
Evaluation of sample cell materials for aqueous solutions used in quasi-elastic neutron scattering measurements
,”
J. Appl. Crystallogr.
54
,
1631
1640
(
2021
).
37.
N. R.
de Souza
,
A.
Klapproth
, and
G. N.
Iles
, “
EMU: High-resolution backscattering spectrometer at ANSTO
,”
Neutron News
27
,
20
21
(
2016
).
38.
K.
Shibata
,
N.
Takahashi
,
Y.
Kawakita
,
M.
Matsuura
,
T.
Yamada
,
T.
Tominaga
,
W.
Kambara
,
M.
Kobayashi
,
Y.
Inamura
,
T.
Nakatani
,
K.
Nakajima
, and
M.
Arai
, “
The performance of TOF near backscattering spectrometer DNA in MLF, J-PARC
,”
JPS Conf. Proc.
8
,
036022
(
2015
).
39.
H.
Seto
,
S.
Itoh
,
T.
Yokoo
,
H.
Endo
,
K.
Nakajima
,
K.
Shibata
,
R.
Kajimoto
,
S.
Ohira-Kawamura
,
M.
Nakamura
,
Y.
Kawakita
,
H.
Nakagawa
, and
T.
Yamada
, “
Inelastic and quasi-elastic neutron scattering spectrometers in J-PARC
,”
Biochim. Biophys. Acta, Gen. Subj.
1861
,
3651
3660
(
2017
).
40.
R.
Kajimoto
,
T.
Yokoo
,
M.
Nakamura
,
Y.
Kawakita
,
M.
Matsuura
,
H.
Endo
,
H.
Seto
,
S.
Itoh
,
K.
Nakajima
, and
S.
Ohira-Kawamura
, “
Status of neutron spectrometers at J-PARC
,”
Physica B
562
,
148
154
(
2019
).
41.
Y.
Kawakita
,
M.
Matsuura
,
T.
Tominaga
,
T.
Yamada
,
H.
Tamatsukuri
,
H.
Nakagawa
, and
K.
Ohuchi
, “
Recent progress on DNA ToF backscattering spectrometer in MLF, J-PARC
,”
EPJ Web Conf.
272
,
02002
(
2022
).
You do not currently have access to this content.