In this study, we conducted successful experiments on ethylenediamine sulfate (EDS), an organic compound, to investigate its enantioselectivity in chiral crystallization. We employed optical trapping with circularly polarized laser beams, using a continuous wave laser at 1064 nm. By focusing the laser at the air–solution interface of a heavy water-saturated EDS solution, the formation of sub-micrometer-sized chiral EDS crystals was verified. Two generated enantiomorphs (d-crystal and l-crystal) were identified by the rotating analyzer method. The enantioselectivity in the chiral crystallization of EDS was assessed through 30 to 60 times experiments conducted under various conditions of laser powers and polarization modes, utilizing the count of generated crystals for each enantiomorph in the evaluation. Circularly polarized lasers at a specific power created an imbalance in the generation probability of the enantiomorphs, resulting in crystal enantiomeric excess values of 23% and −30%. The enantioselectivity mechanism was explored from two perspectives: refractive index differences of two enantiomorphs and 3D helical optical forces. Study of the thermodynamic mechanism was insufficient to explain the outcomes. Conversely, the 3D helical optical force mechanism revealed that the forces acting on EDS clusters in solution induced helical fluid motion, driving EDS nucleation, with the helicity of fluid motion determining the crystal’s chirality. This approach will present new insights into chirality in industrial and research fields, with potential applications in regard to improving optical resolution and addressing the origin of homochirality.

1.
A.
Favre-Bulle
,
A. B.
Stilgoe
,
E. K.
Scott
, and
H.
Rubinsztein-Dunlop
, “
Optical trapping in vivo: Theory, practice, and applications
,”
Nanophotonics
8
,
1023
1040
(
2019
).
2.
C. J.
Bustamante
,
Y. R.
Chemla
,
S.
Liu
, and
M. D.
Wang
, “
Optical tweezers in single-molecule biophysics
,”
Nat. Rev. Methods Primers
1
,
25
(
2021
).
3.
H.
Masuhara
and
K.
Yuyama
, “
Optical force-induced chemistry at solution surfaces
,”
Annu. Rev. Phys. Chem.
72
,
565
589
(
2021
).
4.
A.
Kritzinger
,
A.
Forbes
, and
P. B. C.
Forbes
, “
Optical trapping and fluorescence control with vectorial structured light
,”
Sci. Rep.
12
,
17690
(
2022
).
5.
H. M.
Rivy
,
S. A.
Aljunid
,
E.
Lassalle
,
N. I.
Zheludev
, and
D.
Wilkowski
, “
Single atom in a superoscillatory optical trap
,”
Commun. Phys.
6
,
155
(
2023
).
6.
A.
Ashkin
, “
Acceleration and trapping of particles by radiation pressure
,”
Phys. Rev. Lett.
24
,
156
159
(
1970
).
7.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
8.
T.
Sugiyama
,
T.
Adachi
, and
H.
Masuhara
, “
Crystallization of glycine by photon pressure of a focused CW laser beam
,”
Chem. Lett.
36
,
1480
1481
(
2007
).
9.
T.
Sugiyama
,
K. I.
Yuyama
, and
H.
Masuhara
, “
Laser trapping chemistry: From polymer assembly to amino acid crystallization
,”
Acc. Chem. Res.
45
,
1946
1954
(
2012
).
10.
J.-R.
Tu
,
A.
Miura
,
K. I.
Yuyama
,
H.
Masuhara
, and
T.
Sugiyama
, “
Crystal growth of lysozyme controlled by laser trapping
,”
Cryst. Growth Des.
14
,
15
22
(
2014
).
11.
Y.
Tsuboi
,
T.
Shoji
, and
N.
Kitamura
, “
Optical trapping of amino acids in aqueous solutions
,”
J. Phys. Chem. C
114
,
5589
5593
(
2010
).
12.
A.-C.
Cheng
,
H.
Masuhara
, and
T.
Sugiyama
, “
Evolving crystal morphology of potassium chloride controlled by optical trapping
,”
J. Phys. Chem. C
124
,
6913
6921
(
2020
).
13.
K. I.
Yuyama
,
D.-S.
Chiu
,
Y.-E.
Liu
,
T.
Sugiyama
, and
H.
Masuhara
, “
Crystal growth and dissolution dynamics of L-phenylalanine controlled by solution surface laser trapping
,”
Cryst. Growth Des.
18
,
7079
7087
(
2018
).
14.
T.
Rungsimanon
,
K. I.
Yuyama
,
T.
Sugiyama
,
H.
Masuhara
,
N.
Tohnai
, and
M.
Miyata
, “
Control of crystal polymorph of glycine by photon pressure of a focused continuous wave near-infrared laser beam
,”
J. Phys. Chem. Lett.
1
,
599
603
(
2010
).
15.
J.
Cruz-Cabeza
,
N.
Feeder
, and
R. J.
Davey
, “
Open questions in organic crystal polymorphism
,”
Commun. Chem.
3
,
142
(
2020
).
16.
Q.
Shi
,
H.
Chen
,
Y.
Wang
,
J.
Xu
,
Z.
Liu
, and
C.
Zhang
, “
Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization
,”
Int. J. Pharm.
611
,
121320
(
2022
).
17.
R.
Censi
and
P.
DiMartino
, “
Polymorph impact on the bioavailability and stability of poorly soluble drugs
,”
Molecules
20
,
18759
18776
(
2015
).
18.
J. T.
Sertório
,
R.
Lacchini
,
L. M.
Amaral
,
A. C. T.
Palei
,
R. C.
Cavalli
,
V. C.
Sandrim
,
G.
Duarte
, and
J. E.
Tanus-Santos
, “
Haptoglobin polymorphism affects nitric oxide bioavailability in preeclampsia
,”
J. Hum. Hypertens.
27
,
349
354
(
2013
).
19.
J.
Ceramella
,
D.
Iacopetta
,
A.
Franchini
,
M.
De Luca
,
C.
Saturnino
,
I.
Andreu
,
M. S.
Sinicropi
, and
A.
Catalano
, “
A look at the importance of chirality in drug activity: Some significative examples
,”
Appl. Sci.
12
,
10909
(
2022
).
20.
P.
Silvestri
and
P. J. J.
Colbon
, “
The growing importance of chirality in 3D chemical space exploration and modern drug discovery approaches for hit-ID
,”
ACS Med. Chem. Lett.
12
,
1220
1229
(
2021
).
21.
W. H.
Brooks
,
W. C.
Guida
, and
K. G.
Daniel
, “
The significance of chirality in drug design and development
,”
Curr. Top. Med. Chem.
11
,
760
770
(
2011
).
22.
D. M.
Whitacre
,
Reviews of Environmental Contamination and Toxicology
(
Springer
,
2012
), Vol.
217
.
23.
Y.
Liu
,
J.
Xiao
,
J.
Koo
, and
B.
Yan
, “
Chirality-driven topological electronic structure of DNA-like materials
,”
Nat. Mater.
20
,
638
644
(
2021
).
24.
H.
Kuang
,
C.
Xu
, and
Z.
Tang
, “
Emerging chiral materials
,”
Adv. Mater.
32
,
2005110
(
2020
).
25.
P. H.
Chuong
,
L. A.
Nguyen
, and
H.
He
, “
Chiral drugs: An overview
,”
Int. J. Biomed. Sci.
2
,
85
100
(
2006
).
26.
I.
Putman
and
D. W.
Armstrong
, “
Recent advances in the field of chiral crystallization
,”
Chirality
34
,
1338
1354
(
2022
).
27.
T.
Matsuura
and
H.
Koshima
, “
Introduction to chiral crystallization of achiral organic compounds: Spontaneous generation of chirality
,”
J. Photochem. Photobiol., C
6
,
7
24
(
2005
).
28.
A. K.
Scott
, “
Stereoisomers and drug toxicity
,”
Drug Saf.
8
,
149
159
(
1993
).
29.
E.
Dorey
, “
Chiral drugs viable, despite failure
,”
Nat. Biotechnol.
18
,
1239
1240
(
2000
).
30.
W.
Jung
,
J.
Kwon
,
W.
Cho
, and
J.
Yeom
, “
Chiral biomaterials for nanomedicines: From molecules to supraparticles
,”
Pharmaceutics
14
,
1951
(
2022
).
31.
K.
Toyoda
,
H.-T.
Su
,
K.
Miyamoto
,
T.
Sugiyama
, and
T.
Omatsu
, “
Chiral crystallization manipulated by orbital angular momentum of light
,”
Optica
10
,
332
(
2023
).
32.
A.-C.
Cheng
,
H.
Niinomi
,
T.
Omatsu
,
S.
Ishida
,
K.
Sasaki
, and
T.
Sugiyama
, “
Plasmonic manipulation-controlled chiral crystallization of sodium chlorate
,”
J. Phys. Chem. Lett.
11
,
4422
4426
(
2020
).
33.
H.
Niinomi
,
T.
Sugiyama
,
M.
Tagawa
,
K.
Murayama
,
S.
Harada
, and
T.
Ujihara
, “
Enantioselective amplification on circularly polarized laser-induced chiral nucleation from a NaClO3 solution containing Ag nanoparticles
,”
CrystEngComm
18
,
7441
7448
(
2016
).
34.
R.
Ward
,
G. W.
Copeland
, and
A. J.
Alexander
, “
Chiral hide-and-seek: Retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate
,”
J. Chem. Phys.
135
,
114508
(
2011
).
35.
E. R.
Barber
,
N. L. H.
Kinney
, and
A. J.
Alexander
, “
Pulsed laser-induced nucleation of sodium chlorate at high energy densities
,”
Cryst. Growth Des.
19
,
7106
7111
(
2019
).
36.
G. H.
Wagnière
,
On Chirality and the Universal Asymmetry: Reflections on Image and Mirror
(
Wiley VCH
,
Weinheim
,
2007
).
37.
A.
Guijarro
and
M.
Yus
,
The Origin of Chirality in the Molecules of Life
(
RSC Publishing
,
Cambridge
,
2009
).
38.
M.
Briard
,
C.
Brandel
, and
V.
Dupray
, “
Strong enhancement of nucleation efficiency of aqueous ethylenediamine sulfate solutions by nonphotochemical laser-induced nucleation: Investigations on the role of solid impurities in the mechanism
,”
Cryst. Growth Des.
23
,
7169
7178
(
2023
).
39.
L. A.
Cuccia
,
L.
Koby
,
J. B.
Ningappa
, and
M.
Dakessian
, “
Chiral crystallization of ethylenediamine sulfate
,”
J. Chem. Educ.
82
,
1043
(
2005
).
40.
A.
Matsumoto
,
T.
Ide
,
Y.
Kaimori
,
S.
Fujiwara
, and
K.
Soai
, “
Asymmetric autocatalysis triggered by chiral crystal of achiral ethylenediamine sulfate
,”
Chem. Lett.
44
,
688
690
(
2015
).
41.
T. P. T.
Nguyen
,
P. S. M.
Cheung
,
L.
Werber
,
J.
Gagnon
,
R.
Sivakumar
,
C.
Lennox
,
A.
Sossin
,
Y.
Mastai
, and
L. A.
Cuccia
, “
Directing the Viedma ripening of ethylenediammonium sulfate using "Tailor-made" chiral additives
,”
Chem. Commun.
52
,
12626
12629
(
2016
).
42.
K.
Jayaraman
,
A.
Choudhury
, and
C. N. R.
Rao
, “
Sulfates of organic diamines: Hydrogen-bonded structures and properties
,”
Solid State Sci.
4
,
413
422
(
2002
).
43.
K.
Sakurai
, “
A direct determination of the crystal structure of ethylenediammonium sulphate
,”
J. Phys. Soc. Jpn.
16
,
1205
1213
(
1961
).
44.
K.
Setoura
,
K.
Fujita
,
S.
Ito
, and
H.
Miyasaka
, “
Temperature elevation and fluid convection under optical trapping condition as revealed by fluorescence correlation spectroscopy
,”
J. Nanophotonics
13
,
012504
(
2018
).
45.
S.
Ito
,
T.
Sugiyama
,
N.
Toitani
,
G.
Katayama
, and
H.
Miyasaka
, “
Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition
,”
J. Phys. Chem. B
111
,
2365
2371
(
2007
).
46.
S.
Albaladejo
,
M. I.
Marqués
,
M.
Laroche
, and
J. J.
Sáenz
, “
Scattering forces from the curl of the spin angular momentum of a light field
,”
Phys. Rev. Lett.
102
,
113602
(
2009
).
47.
A. J.
Alexander
and
P. J.
Camp
, “
Non-photochemical laser-induced nucleation
,”
J. Chem. Phys.
150
,
040901
(
2019
).
48.
T.
Sugiyama
and
S.-F.
Wang
, “
Manipulation of nucleation and polymorphism by laser irradiation
,”
J. Photochem. Photobiol., C
52
,
100530
(
2022
).
49.
R.
Ward
and
A. J.
Alexander
, “
Nonphotochemical laser-induced nucleation of potassium halides: Effects of wavelength and temperature
,”
Cryst. Growth Des.
12
,
4554
4561
(
2012
).
50.
L. F.
Alexander
and
N.
Radacsi
, “
Application of electric fields for controlling crystallization
,”
CrystEngComm
21
,
5014
5031
(
2019
).
51.
H.
Niinomi
,
T.
Sugiyama
,
A.-C.
Cheng
,
M.
Tagawa
,
T.
Ujihara
,
H. Y.
Yoshikawa
,
R.
Kawamura
,
J.
Nozawa
,
J. T.
Okada
, and
S.
Uda
, “
Chiral optical force generated by a superchiral near-field of a plasmonic triangle trimer as origin of giant bias in chiral nucleation: A simulation study
,”
J. Phys. Chem. C
125
,
6209
6221
(
2021
).
52.
H.
Eyring
,
H.-C.
Liu
, and
D.
Caldwell
, “
Optical rotatory dispersion and circular dichroism
,”
Chem. Rev.
68
,
525
540
(
1968
).
53.
S.-F.
Wang
and
T.
Sugiyama
, “
Femtosecond laser-driven enantioselectivity on achiral–chiral polymorphic transition
,”
Cell Rep. Phys. Sci.
4
,
101323
(
2023
).
54.
M.
Sakamoto
,
N.
Uemura
,
R.
Saito
,
H.
Shimobayashi
,
Y.
Yoshida
,
T.
Mino
, and
T.
Omatsu
, “
Chirogenesis and amplification of molecular chirality using optical vortices
,”
Angew. Chem., Int. Ed.
60
,
12819
12823
(
2021
).
55.
L.
Allen
,
M. W.
Beijersbergen
,
R. J. C.
Spreeuw
, and
J. P.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
8189
(
1992
).
56.
K. Y.
Bliokh
,
E. A.
Ostrovskaya
,
M. A.
Alonso
,
O. G.
Rodríguez-Herrera
,
D.
Lara
, and
C.
Dainty
, “
Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems
,”
Opt. Express
19
,
26132
26149
(
2011
).
57.
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Nori
, and
A. V.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
58.
M.
Kuroha
,
S.
Nambu
,
S.
Hattori
,
Y.
Kitagawa
,
K.
Niimura
,
Y.
Mizuno
,
F.
Hamba
, and
K.
Ishii
, “
Chiral supramolecular nanoarchitectures from macroscopic mechanical rotations: Effects on enantioselective aggregation behavior of phthalocyanines
,”
Angew. Chem., Int. Ed.
58
,
18454
18459
(
2019
).
59.
J. M.
Ribó
,
J.
Crusats
,
F.
Sagués
,
J.
Claret
, and
R.
Rubires
, “
Chiral sign induction by vortices during the formation of mesophases in stirred solutions
,”
Science
292
,
2063
2066
(
2001
).
60.
O.
Ohno
,
Y.
Kaizu
, and
H.
Kobayashi
, “
J‐aggregate formation of a water‐soluble porphyrin in acidic aqueous media
,”
J. Chem. Phys.
99
,
4128
4139
(
1993
).

Supplementary Material

You do not currently have access to this content.