Quantum state-to-state nonadiabatic dynamics of the charge transfer reaction H+ + NO(X2Π, vi = 1, 3, ji = 0, 1) → H + NO+(X1Σ+) has been studied based on the recently constructed diabatic potential energy matrix. It was found that the vibrational excitation of reactant NO inhibits the reactivity, while the rotational excitation of reactant NO has little effect on the reaction probability. These attributes were also observed in the semi-classical trajectory calculations employed in the adiabatic representation. Such an inhibitory effect of the vibrational excitation of reactant NO was owing to lower accessibility of the conical intersection and avoided crossing regions, which are located in the wells with respect to the Π diabat, as evidenced by the analysis of the population of the time-independent wave functions. Calculated vibrational state distributions of the product show that the decrease of the reaction mainly leads to the less formation of low vibrational states (vf < 6), and the product vibrational state distributions are more evenly populated for vi = 1 and 3, suggesting a non-statistical behavior. However, the overall shapes of the product rotational distributions remain unchanged, indicating that the redistribution of energy into the rotation of product NO is sufficient in the charge transfer process between H+ and NO. While the reaction is dominated by the forward and backward scattering in differential cross sections (DCSs), consistent with the complex-forming mechanism, a clear forward bias in the DCSs appears, indicating that the occurrence of the reaction is not sufficiently long to undergo the whole phase space of the interaction configurations.

1.
J. F.
Noxon
,
J. Geophys. Res.
75
,
1879
, (
1970
).
2.
G. H.
Loew
,
D. S.
Berkowitz
, and
S.
Chang
,
Astrophys. J.
219
,
458
(
1978
).
3.
R.
Portmann
,
J.
Daniel
, and
A.
Ravishankara
,
Philos. Trans. R. Soc., B
367
,
1256
(
2012
).
4.
E.
Hyman
,
D.
Strickland
,
P.
Julienne
, and
D.
Strobel
,
J. Geophys. Res.
81
,
4765
, (
1976
).
5.
J. A.
Leone
and
J. H.
Seinfeld
,
Atmos. Environ.
19
,
437
(
1985
).
6.
J.
Chang
,
R.
Brost
,
I.
Isaksen
,
S.
Madronich
,
P.
Middleton
,
W.
Stockwell
, and
C.
Walcek
,
J. Geophys. Res.
92
,
14681
, (
1987
).
7.
E.
Herbst
and
W.
Klemperer
,
Astrophys. J.
185
,
505
(
1973
).
8.
S.
Amaran
,
S.
Kumar
, and
H.
Köppel
,
J. Chem. Phys.
128
,
124305
(
2008
).
9.
S.
Amaran
and
S.
Kumar
,
J. Chem. Phys.
128
,
124306
(
2008
).
10.
M. R.
Manaa
and
D. R.
Yarkony
,
J. Chem. Phys.
97
,
715
(
1992
).
11.
D. R.
Yarkony
,
J. Chem. Phys.
90
,
1657
(
1989
).
12.
Z.
Wang
,
S.
Hou
, and
C.
Xie
,
Phys. Chem. Chem. Phys.
25
,
23808
(
2023
).
13.
C.
Stopera
,
B.
Maiti
, and
J. A.
Morales
,
Chem. Phys. Lett.
551
,
42
(
2012
).
14.
J.
Krutein
and
F.
Linder
,
J. Chem. Phys.
71
,
599
(
1979
).
15.
C. S.
Enos
,
A. R.
Lee
, and
A. G.
Brenton
,
Int. J. Mass Spectrom. Ion Processes
112
,
111
(
1992
).
16.
R. S.
Gao
,
L. K.
Johnson
,
C. L.
Hakes
,
K. A.
Smith
, and
R. F.
Stebbings
,
Phys. Rev. A
41
,
5929
(
1990
).
17.
G. H.
Bearman
,
J. D.
Earl
,
H. H.
Harris
,
P. B.
James
, and
J. J.
Leventhal
,
Chem. Phys. Lett.
44
,
471
(
1976
).
18.
F. C.
Fehsenfeld
and
E. E.
Ferguson
,
J. Chem. Phys.
56
,
3066
(
1972
).
19.
A.
Li
,
C.
Xie
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
134
,
194309
(
2011
).
20.
J.
Daranlot
,
M.
Jorfi
,
C. J.
Xie
,
A.
Bergeat
,
M.
Costes
,
P.
Caubet
,
D. Q.
Xie
,
H.
Guo
,
P.
Honvault
, and
K. M.
Hickson
,
Science
334
,
1538
(
2011
).
21.
A.
Li
,
C.
Xie
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
138
,
024308
(
2013
).
22.
D. H.
Zhang
and
H.
Guo
,
Annu. Rev. Phys. Chem.
67
,
135
(
2016
).
23.
A.
Ben Houria
,
H.
Gritli
,
N.
Jaidane
,
Z.
Ben Lakdhar
,
G.
Chambaud
, and
P.
Rosmus
,
Chem. Phys.
274
,
71
(
2001
).
24.
C.
Marian
,
P. J.
Bruna
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
Mol. Phys.
33
,
63
(
1977
).
25.
P. J.
Bruna
and
C. M.
Marian
,
Chem. Phys.
37
,
425
(
1979
).
26.
A. D.
McLean
,
G. H.
Loew
, and
D. S.
Berkowitz
,
Mol. Phys.
36
,
1359
(
1978
).
27.
H.
Guo
and
B.
Jiang
,
Acc. Chem. Res.
47
,
3679
(
2014
).
28.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
103
,
2903
(
1995
).
29.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
105
,
3569
(
1996
).
30.
S. Y.
Lin
and
H.
Guo
,
Phys. Rev. A
74
,
022703
(
2006
).
31.
Z.
Sun
,
S. Y.
Lee
,
H.
Guo
, and
D. H.
Zhang
,
J. Chem. Phys.
130
,
174102
(
2009
).
32.
Z.
Sun
,
H.
Guo
, and
D. H.
Zhang
,
J. Chem. Phys.
132
,
084112
(
2010
).
33.
Y.
Huang
,
D. J.
Kouri
, and
D. K.
Hoffman
,
Chem. Phys. Lett.
225
,
37
(
1994
).
34.
Y.
Huang
,
W.
Zhu
,
D. J.
Kouri
, and
D. K.
Hoffman
,
Chem. Phys. Lett.
206
,
96
(
1993
).
35.
J. Z. H.
Zhang
and
W. H.
Miller
,
J. Chem. Phys.
91
,
1528
(
1989
).
36.
A. W.
Jasper
,
S. N.
Stechmann
, and
D. G.
Truhlar
,
J. Chem. Phys.
116
,
5424
(
2002
).
37.
A. W.
Jasper
and
D. G.
Truhlar
,
Chem. Phys. Lett.
369
,
60
(
2003
).
38.
Y.
Shu
,
L.
Zhang
,
J.
Zheng
,
Z.-H.
Li
,
A. W.
Jasper
,
D. A.
Bonhommeau
,
R.
Valero
,
R.
Meana-Pañeda
,
S. L.
Mielke
, and
D. G.
Truhlar
, in
ANT 2023
(
University of Minnesota
,
Minneapolis
,
2023
), https://doi.org/10.5281/zenodo.7807406.
39.
A. W.
Jasper
and
D. G.
Truhlar
,
J. Chem. Phys.
127
,
194306
(
2007
).
You do not currently have access to this content.