We present a novel theoretical formulation for performing quantum dynamics in terms of moments within the single-particle description. By expressing the quantum dynamics in terms of increasing orders of moments, instead of single-particle wave functions as generally done in time-dependent density functional theory, we describe an approach for reducing the high computational cost of simulating the quantum dynamics. The equation of motion is given for the moments by deriving analytical expressions for the first-order and second-order time derivatives of the moments, and a numerical scheme is developed for performing quantum dynamics by expanding the moments in the Taylor series as done in classical molecular dynamics simulations. We propose a few numerical approaches using this theoretical formalism on a simple one-dimensional model system, for which an analytically exact solution can be derived. The application of the approaches to an anharmonic system is also discussed to illustrate their generality. We also discuss the use of an artificial neural network model to circumvent the numerical evaluation of the second-order time derivatives of the moments, as analogously done in the context of classical molecular dynamics simulations.

1.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E. I.
DePrince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
2.
D. R.
Nascimento
and
A. E. I.
DePrince
, “
Linear absorption spectra from explicitly time-dependent equation-of-motion coupled-cluster theory
,”
J. Chem. Theory Comput.
12
,
5834
5840
(
2016
).
3.
L. N.
Koulias
,
D. B.
Williams-Young
,
D. R.
Nascimento
,
A. E. I.
DePrince
, and
X.
Li
, “
Relativistic real-time time-dependent equation-of-motion coupled-cluster
,”
J. Chem. Theory Comput.
15
,
6617
6624
(
2019
).
4.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
4487
(
1996
).
5.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time: Application to conjugated molecules
,”
Int. J. Quantum Chem.
75
,
55
66
(
1999
).
6.
J.
Theilhaber
, “
Ab initio simulations of sodium using time-dependent density-functional theory
,”
Phys. Rev. B
46
,
12990
13003
(
1992
).
7.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
8.
C.
Shepard
,
R.
Zhou
,
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
, “
Simulating electronic excitation and dynamics with real-time propagation approach to TDDFT within plane-wave pseudopotential formulation
,”
J. Chem. Phys.
155
,
100901
(
2021
).
9.
A.
Kononov
,
C.-W.
Lee
,
T. P.
dos Santos
,
B.
Robinson
,
Y.
Yao
,
Y.
Yao
,
X.
Andrade
,
A. D.
Baczewski
,
E.
Constantinescu
,
A. A.
Correa
,
Y.
Kanai
,
N.
Modine
, and
A.
Schleife
, “
Electron dynamics in extended systems within real-time time-dependent density-functional theory
,”
MRS Commun.
12
,
1002
1014
(
2022
).
10.
J.
Hekele
,
Y.
Yao
,
Y.
Kanai
,
V.
Blum
, and
P.
Kratzer
, “
All-electron real-time and imaginary-time time-dependent density functional theory within a numeric atom-centered basis function framework
,”
J. Chem. Phys.
155
,
154801
(
2021
).
11.
C.
Pemmaraju
,
F.
Vila
,
J.
Kas
,
S.
Sato
,
J.
Rehr
,
K.
Yabana
, and
D.
Prendergast
, “
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
,”
Comput. Phys. Commun.
226
,
30
38
(
2018
).
12.
J.
Sun
,
C.-W.
Lee
,
A.
Kononov
,
A.
Schleife
, and
C. A.
Ullrich
, “
Real-time exciton dynamics with time-dependent density-functional theory
,”
Phys. Rev. Lett.
127
,
077401
(
2021
).
13.
C.
Shepard
,
D. C.
Yost
, and
Y.
Kanai
, “
Electronic excitation response of dna to high-energy proton radiation in water
,”
Phys. Rev. Lett.
130
,
118401
(
2023
).
14.
Y.
Yao
,
D. C.
Yost
, and
Y.
Kanai
, “
K-shell core-electron excitations in electronic stopping of protons in water from first principles
,”
Phys. Rev. Lett.
123
,
066401
(
2019
).
15.
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
, “
First-principles modeling of electronic stopping in complex matter under ion irradiation
,”
J. Phys. Chem. Lett.
11
,
229
237
(
2020
).
16.
A.
Petrone
,
D. B.
Lingerfelt
,
N.
Rega
, and
X.
Li
, “
From charge-transfer to a charge-separated state: A perspective from the real-time TDDFT excitonic dynamics
,”
Phys. Chem. Chem. Phys.
16
,
24457
24465
(
2014
).
17.
S.
Kümmel
, “
Charge-transfer excitations: A challenge for time-dependent density functional theory that has been met
,”
Adv. Energy Mater.
7
,
1700440
(
2017
).
18.
D. C.
Ratchford
, “
Plasmon-induced charge transfer: Challenges and outlook
,”
ACS Nano
13
,
13610
13614
(
2019
).
19.
P.
You
,
C.
Lian
,
D.
Chen
,
J.
Xu
,
C.
Zhang
,
S.
Meng
, and
E.
Wang
, “
Nonadiabatic dynamics of photocatalytic water splitting on a polymeric semiconductor
,”
Nano Lett.
21
,
6449
6455
(
2021
).
20.
Y.
Miyamoto
,
H.
Zhang
,
X.
Cheng
, and
A.
Rubio
, “
Ab initio simulation of laser-induced water decomposition close to carbon nanotubes
,”
Phys. Rev. B
99
,
165424
(
2019
).
21.
Y.
Miyamoto
,
H.
Zhang
,
X.
Cheng
, and
A.
Rubio
, “
Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on time-dependent density functional theory
,”
Phys. Rev. B
96
,
115451
(
2017
).
22.
E.
Makkonen
,
T. P.
Rossi
,
A. H.
Larsen
,
O.
Lopez-Acevedo
,
P.
Rinke
,
M.
Kuisma
, and
X.
Chen
, “
Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters
,”
J. Chem. Phys.
154
,
114102
(
2021
).
23.
L.
Konecny
,
M.
Repisky
,
K.
Ruud
, and
S.
Komorovsky
, “
Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations
,”
J. Chem. Phys.
151
,
194112
(
2019
).
24.
J. J.
Goings
and
X.
Li
, “
An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra
,”
J. Chem. Phys.
144
,
234102
(
2016
).
25.
S.
Sun
,
R. A.
Beck
,
D.
Williams-Young
, and
X.
Li
, “
Simulating magnetic circular dichroism spectra with real-time time-dependent density functional theory in gauge including atomic orbitals
,”
J. Chem. Theory Comput.
15
,
6824
6831
(
2019
).
26.
J.
Krumland
,
A. M.
Valencia
,
S.
Pittalis
,
C. A.
Rozzi
, and
C.
Cocchi
, “
Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
,”
J. Chem. Phys.
153
,
054106
(
2020
).
27.
T. P.
Rossi
,
M.
Kuisma
,
M. J.
Puska
,
R. M.
Nieminen
, and
P.
Erhart
, “
Kohn–Sham decomposition in real-time time-dependent density-functional theory: An efficient tool for analyzing plasmonic excitations
,”
J. Chem. Theory Comput.
13
,
4779
4790
(
2017
).
28.
W.
Jia
and
L.
Lin
, “
Fast real-time time-dependent hybrid functional calculations with the parallel transport gauge and the adaptively compressed exchange formulation
,”
Comput. Phys. Commun.
240
,
21
29
(
2019
).
29.
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
, “
Propagation of maximally localized Wannier functions in real-time TDDFT
,”
J. Chem. Phys.
150
,
194113
(
2019
).
30.
F.
Gygi
,
J.-L.
Fattebert
, and
E.
Schwegler
, “
Computation of maximally localized Wannier functions using a simultaneous diagonalization algorithm
,”
Comput. Phys. Commun.
155
,
1
6
(
2003
).
31.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
32.
R.
Zhou
,
D. C.
Yost
, and
Y.
Kanai
, “
First-principles demonstration of nonadiabatic Thouless pumping of electrons in a molecular system
,”
J. Phys. Chem. Lett.
12
,
4496
4503
(
2021
).
33.
R.
Zhou
and
Y.
Kanai
, “
Molecular control of floquet topological phase in non-adiabatic Thouless pumping
,”
J. Phys. Chem. Lett.
14
,
8205
8212
(
2023
).
34.
J.
Carrasquilla
, “
Machine learning for quantum matter
,”
Adv. Phys.: X
5
,
1797528
(
2020
).
35.
K.
Lin
,
J.
Peng
,
C.
Xu
,
F. L.
Gu
, and
Z.
Lan
, “
Automatic evolution of machine-learning-based quantum dynamics with uncertainty analysis
,”
J. Chem. Theory Comput.
18
,
5837
5855
(
2022
).
36.
D.
Luo
,
Z.
Chen
,
J.
Carrasquilla
, and
B. K.
Clark
, “
Autoregressive neural network for simulating open quantum systems via a probabilistic formulation
,”
Phys. Rev. Lett.
128
,
090501
(
2022
).
37.
N.
Mohseni
,
T.
Fösel
,
L.
Guo
,
C.
Navarrete-Benlloch
, and
F.
Marquardt
, “
Deep learning of quantum many-body dynamics via random driving
,”
Quantum
6
,
714
(
2022
).
38.
L. E. H.
Rodríguez
,
A.
Ullah
,
K. J. R.
Espinosa
,
P. O.
Dral
, and
A. A.
Kananenka
, “
A comparative study of different machine learning methods for dissipative quantum dynamics
,”
Mach. Learn.: Sci. Technol.
3
,
045016
(
2022
).
39.
F.
Häse
,
S.
Valleau
,
E.
Pyzer-Knapp
, and
A.
Aspuru-Guzik
, “
Machine learning exciton dynamics
,”
Chem. Sci.
7
,
5139
5147
(
2016
).
40.
C.-W.
Ju
,
H.
Bai
,
B.
Li
, and
R.
Liu
, “
Machine learning enables highly accurate predictions of photophysical properties of organic fluorescent materials: Emission wavelengths and quantum yields
,”
J. Chem. Inf. Model.
61
,
1053
1065
(
2021
).
41.
W.
Chu
,
W. A.
Saidi
, and
O. V.
Prezhdo
, “
Long-lived hot electron in a metallic particle for plasmonics and catalysis: Ab initio nonadiabatic molecular dynamics with machine learning
,”
ACS Nano
14
,
10608
10615
(
2020
).
42.
M.
Bogojeski
,
L.
Vogt-Maranto
,
M. E.
Tuckerman
,
K.-R.
Müller
, and
K.
Burke
, “
Quantum chemical accuracy from density functional approximations via machine learning
,”
Nat. Commun.
11
,
5223
(
2020
).
43.
J.
Westermayr
,
M.
Gastegger
,
K. T.
Schütt
, and
R. J.
Maurer
, “
Perspective on integrating machine learning into computational chemistry and materials science
,”
J. Chem. Phys.
154
,
230903
(
2021
).
44.
J.
Westermayr
and
P.
Marquetand
, “
Machine learning and excited-state molecular dynamics
,”
Mach. Learn.: Sci. Technol.
1
,
043001
(
2020
).
45.
S.
Doerr
,
M.
Majewski
,
A.
Pérez
,
A.
Krämer
,
C.
Clementi
,
F.
Noe
,
T.
Giorgino
, and
G.
De Fabritiis
, “
TorchMD: A deep learning framework for molecular simulations
,”
J. Chem. Theory Comput.
17
,
2355
2363
(
2021
).
46.
M.
Secor
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
, “
Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels
,”
J. Phys. Chem. Lett.
12
,
2206
2212
(
2021
).
47.
M.
Secor
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
, “
Artificial neural networks as propagators in quantum dynamics
,”
J. Phys. Chem. Lett.
12
,
10654
10662
(
2021
).
48.
Y.
Yao
,
C.
Cao
,
S.
Haas
,
M.
Agarwal
,
D.
Khanna
, and
M.
Abram
, “
Emulating quantum dynamics with neural networks via knowledge distillation
,”
Frontiers in Materials
9
, (
2023
).
49.
O. V.
Prezhdo
and
Y. V.
Pereverzev
, “
Quantized Hamilton dynamics
,”
J. Chem. Phys.
113
,
6557
6565
(
2000
).
50.
Y.
Shigeta
,
H.
Miyachi
, and
K.
Hirao
, “
Quantal cumulant dynamics: General theory
,”
J. Chem. Phys.
125
,
244102
(
2006
).
51.
Y.
Shen
and
L.
Wang
, “
Semiclassical Moyal dynamics
,”
J. Chem. Phys.
149
,
244113
(
2018
).
52.
P.
Hall
,
The Bootstrap and Edgeworth Expansion
(
Springer Science and Business Media
,
2013
).
53.
P. J.
Smith
, “
A recursive formulation of the old problem of obtaining moments from cumulants and vice versa
,”
Am. Stat.
49
,
217
218
(
1995
).
54.
S.
Blinnikov
and
R.
Moessner
, “
Expansions for nearly Gaussian distributions
,”
Astron. Astrophys., Suppl. Ser.
130
,
193
205
(
1998
).
55.
D. L.
Wallace
, “
Asymptotic approximations to distributions
,”
Ann. Math. Stat.
29
,
635
654
(
1958
).
56.
K. Y.
Patarroyo
, “
A digression on Hermite polynomials
,” arXiv:1901.01648l.
57.
T. M.
Coffey
,
R. E.
Wyatt
, and
W. C.
Schieve
, “
Reconstruction of the time-dependent wave function exclusively from position data
,”
Phys. Rev. Lett.
107
,
230403
(
2011
).
58.
K.
Ando
, “
Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum
,”
J. Chem. Phys.
148
,
094305
(
2018
).
59.
Y.
Shigeta
,
R.
Harada
,
M.
Kayanuma
, and
M.
Shoji
, “
Quantal cumulant dynamics for real-time simulations of quantum many-body systems
,”
Int. J. Quantum Chem.
115
,
300
308
(
2015
).
60.
M.
Andrews
, “
The evolution of oscillator wave functions
,”
Am. J. Phys.
84
,
270
278
(
2016
).
61.
N. M.
Newmark
, “
A method of computation for structural dynamics
,”
J. Eng. Mech. Div.
85
,
67
94
(
1959
).
62.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
,
50
67
(
1947
).
63.
K.
Yabana
,
T.
Nakatsukasa
,
J.-I.
Iwata
, and
G. F.
Bertsch
, “
Real-time, real-space implementation of the linear response time-dependent density-functional theory
,”
Phys. Status Solidi B
243
,
1121
1138
(
2006
).
64.
A.
Zangwill
and
P.
Soven
, “
Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases
,”
Phys. Rev. A
21
,
1561
1572
(
1980
).
65.
M. S.
Chen
,
T. J.
Zuehlsdorff
,
T.
Morawietz
,
C. M.
Isborn
, and
T. E.
Markland
, “
Exploiting machine learning to efficiently predict multidimensional optical spectra in complex environments
,”
J. Phys. Chem. Lett.
11
,
7559
7568
(
2020
).
66.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
67.
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
, “
Machine learning force fields: Construction, validation, and outlook
,”
J. Phys. Chem. C
121
,
511
522
(
2017
).
68.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
69.
Y.
Yao
and
Y.
Kanai
, “
Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional
,”
J. Chem. Phys.
153
,
044114
(
2020
).
70.
Y.
Yao
and
Y.
Kanai
, “
Nuclear quantum effect and its temperature dependence in liquid water from random phase approximation via artificial neural network
,”
J. Phys. Chem. Lett.
12
,
6354
6362
(
2021
).
71.
J.
Han
,
L.
Zhang
,
R.
Car
, and
W.
E
, “
Deep potential: A general representation of a many-body potential energy surface
,”
Commun. Comput. Phys.
23
,
629
(
2018
).
72.
L.
Bonati
,
Y.-Y.
Zhang
, and
M.
Parrinello
, “
Neural networks-based variationally enhanced sampling
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
17641
17647
(
2019
).
73.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
74.
F.
Chollet
et al,
Keras
, https://keras.io,
2015
.
You do not currently have access to this content.