Simulating mixed-state evolution in open quantum systems is crucial for various chemical physics, quantum optics, and computer science applications. These simulations typically follow the Lindblad master equation dynamics. An alternative approach known as quantum state diffusion unraveling is based on the trajectories of pure states generated by random wave functions, which evolve according to a nonlinear Itô–Schrödinger equation (ISE). This study introduces weak first-order and second-order solvers for the ISE based on directly applying the Itô–Taylor expansion with exact derivatives in the interaction picture. We tested the method on free and driven Morse oscillators coupled to a thermal environment and found that both orders allowed practical estimation with a few dozen iterations. The variance was relatively small compared to the linear unraveling and did not grow with time. The second-order solver delivers a much higher accuracy and stability with bigger time steps than the first-order scheme, with a small additional workload. However, the second-order algorithm has quadratic complexity with the number of Lindblad operators as opposed to the linear complexity of the first-order algorithm.

1.
W. T.
Pollard
and
R. A.
Friesner
, “
Solution of the Redfield equation for the dissipative quantum dynamics of multilevel systems
,”
J. Chem. Phys.
100
(
7
),
5054
5065
(
1994
).
2.
D.
Kohen
,
C. C.
Marston
, and
D. J.
Tannor
, “
Phase space approach to theories of quantum dissipation
,”
J. Chem. Phys.
107
(
13
),
5236
5253
(
1997
).
3.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems
,
Oxford Graduate Texts
(
Oxford University Press
,
Oxford, New York
,
2006
).
4.
U.
Harbola
,
M.
Esposito
, and
S.
Mukamel
, “
Quantum master equation for electron transport through quantum dots and single molecules
,”
Phys. Rev. B
74
(
23
),
235309
(
2006
).
5.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2007
).
6.
H.
Appel
and
M.
Di Ventra
, “
Stochastic quantum molecular dynamics
,”
Phys. Rev. B
80
(
21
),
212303
(
2009
).
7.
Á.
Rivas
and
F.
Susana Huelga
,
Open Quantum Systems: An Introduction. Springer Briefs in Physics
(
Springer
,
Heidelberg
,
2012
), OCLC: 759533862.
8.
R.
Biele
and
R.
D’Agosta
, “
A stochastic approach to open quantum systems
,”
J. Phys.: Condens. Matter
24
(
27
),
273201
(
2012
).
9.
K.
Blum
,
Density Matrix Theory and Applications, of Springer Series on Atomic, Optical, and Plasma Physics
(
Springer Berlin Heidelberg
,
Berlin Heidelberg
,
2012
), Vol.
64
.
10.
G.
Schaller
,
Open Quantum Systems Far from Equilibrium
(
Springer
,
2014
), Vol.
881
.
11.
C.
Gardiner
and
P.
Zoller
,
The Quantum World of Ultra-cold Atoms and Light Book I: Foundations of Quantum Optics
(
World Scientific Publishing Company
,
2014
).
12.
R.
Uzdin
and
R.
Kosloff
, “
Speed limits in Liouville space for open quantum systems
,”
Europhys. Lett.
115
(
4
),
40003
(
2016
).
13.
R.
Alicki
and
R.
Kosloff
, “
Introduction to quantum thermodynamics: History and prospects
,” in
Thermodynamics In the Quantum Regime, Volume 195 of Fundamental Theories of Physics
, 1st ed., edited by
F.
Binder
,
L. C. G.
Correa
,
J.
Anders
and
G.
Adesso
(
Springer
,
Cham
,
2018
); arXiv:1801.08314.
14.
Z.
Ruan
and
R.
Baer
, “
Unravelling open-system quantum dynamics of non-interacting Fermions
,”
Mol. Phys.
116
,
2490
2496
(
2018
).
15.
G.
Kurizki
and
G.
Abraham Kofman
,
Thermodynamics and Control of Open Quantum Systems
, 1st ed. (
Cambridge University Press
,
December
,
2021
).
16.
A.
Levy
,
E.
Rabani
, and
T.
David
, “
Limmer. Response theory for nonequilibrium steady states of open quantum systems
,”
Phys. Rev. Res.
3
,
2023252
(
2021
).
17.
M.
Gerry
and
D.
Segal
, “
Full counting statistics and coherences: Fluctuation symmetry in heat transport with the unified quantum master equation
,”
Phys. Rev. E
107
(
5
),
054115
(
2023
).
18.
A. G.
Redfield
, “
On the theory of relaxation processes
,”
IBM J. Res. Dev.
1
(
1
),
19
31
(
1957
).
19.
P.
Gaspard
and
M.
Nagaoka
, “
Slippage of initial conditions for the Redfield master equation
,”
J. Chem. Phys.
111
(
13
),
5668
5675
(
1999
).
20.
M.
Esposito
and
M.
Galperin
, “
Self-consistent quantum master equation approach to molecular transport
,”
J. Phys. Chem. C
114
(
48
),
20362
20369
(
2010
).
21.
T.
Becker
,
L.-N.
Wu
, and
A.
Eckardt
, “
Lindbladian approximation beyond ultraweak coupling
,”
Phys. Rev. E
104
(
1
),
014110
(
2021
).
22.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
(
2
),
119
130
(
1976
).
23.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
, “
Completely positive dynamical semigroups of N -level systems
,”
J. Math. Phys.
17
(
5
),
821
825
(
1976
).
24.
R.
Alicki
and
K.
Lendi
,
Quantum Dynamical Semigroups and Applications
,
Volume 717 of Lecture Notes in Physics
(
Springer
,
Berlin, Heidelberg
,
2007
).
25.
D.
Manzano
, “
A short introduction to the Lindblad master equation
,”
AIP Adv.
10
(
2
),
025106
(
2020
).
26.
M. B.
Plenio
and
P. L.
Knight
, “
The quantum-jump approach to dissipative dynamics in quantum optics
,”
Rev. Mod. Phys.
70
,
101
144
(
1998
).
27.
I.
Percival
,
Quantum State Diffusion
(
Cambridge University Press
,
1998
).
28.
J.
Dalibard
,
Y.
Castin
, and
K.
Mølmer
, “
Wave-function approach to dissipative processes in quantum optics
,”
Phys. Rev. Lett.
68
(
5
),
580
583
(
1992
).
29.
C. W.
Gardiner
,
A. S.
Parkins
, and
P.
Zoller
, “
Wave-function quantum stochastic differential equations and quantum-jump simulation methods
,”
Phys. Rev. A
46
(
7
),
4363
4381
(
1992
).
30.
C.
Howard
,
An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles
(
Springer Science & Business Media
,
1993
), Vol.
18
October 28 to November 4, 1991.
31.
N.
Gisin
and
I. C.
Percival
, “
The quantum-state diffusion model applied to open systems
,”
J. Phys., A Math. Gen.
25
(
21
),
5677
5691
(
1992
).
32.
J.
Li
and
X.
Li
, “
Exponential integrators for stochastic Schrödinger equations
,”
Phys. Rev. E
101
(
1
),
013312
(
2020
).
33.
C. M.
Mora
and
M.
Muñoz
, “
On the rate of convergence of an exponential scheme for the non-linear stochastic Schrödinger equation with finite-dimensional state space
,”
Phys. Scr.
98
(
6
),
065226
(
2023
).
34.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP 2: A Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
184
(
4
),
1234
1240
(
2013
).
35.
E.
PeterKloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
1992
).
36.
G. N.
Milstein
,
Numerical Integration of Stochastic Differential Equations
(
Springer
,
Netherlands, Dordrecht
,
1995
).
37.
M.
Feit
,
J. A.
Fleck
, and
A.
Steiger
, “
Solution of the Schrödinger equation by a spectral method
,”
J. Comput. Phys.
47
(
3
),
412
433
(
1982
).
38.
R.
Kosloff
, “
Time-dependent quantum-mechanical methods for molecular dynamics
,”
J. Phys. Chem.
92
(
8
),
2087
2100
(
1988
).
39.
M.
Leijnse
and
M. R.
Wegewijs
, “
Kinetic equations for transport through single-molecule transistors
,”
Phys. Rev. B
78
(
23
),
235424
(
2008
).
40.
M.
Esposito
,
M. A.
Ochoa
, and
M.
Galperin
, “
Efficiency fluctuations in quantum thermoelectric devices
,”
Phys. Rev. B
91
(
11
),
115417
(
2015
).
41.
Y.
Gao
and
M.
Galperin
, “
Simulation of optical response functions in molecular junctions
,”
J. Chem. Phys.
144
(
24
),
244106
(
2016
).
42.
L.
Kidon
,
E. Y.
Wilner
, and
E.
Rabani
, “
Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model
,”
J. Chem. Phys.
143
(
23
),
234110
(
2015
).

Supplementary Material

You do not currently have access to this content.