The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu–O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew–Burke–Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao–Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.

1.
J. G.
Bednorz
and
K. A.
Müller
, “
Possible high TC superconductivity in the Ba-La-Cu-O system
,”
Z. Phys. B: Condens. Matter
64
,
189
193
(
1986
).
2.
P. W.
Anderson
, “
The resonating valence bond state in La2CuO4 and superconductivity
,”
Science
235
,
1196
1198
(
1987
).
3.
C. C.
Tsuei
and
J. R.
Kirtley
, “
Pairing symmetry in cuprate superconductors
,”
Rev. Mod. Phys.
72
,
969
1016
(
2000
).
4.
A.
Damascelli
,
Z.
Hussain
, and
Z.-X.
Shen
, “
Angle-resolved photoemission studies of the cuprate superconductors
,”
Rev. Mod. Phys.
75
,
473
541
(
2003
).
5.
B.
Keimer
,
S. A.
Kivelson
,
M. R.
Norman
,
S.
Uchida
, and
J.
Zaanen
, “
From quantum matter to high-temperature superconductivity in copper oxides
,”
Nature
518
,
179
186
(
2015
).
6.
J. A.
Sobota
,
Y.
He
, and
Z.-X.
Shen
, “
Angle-resolved photoemission studies of quantum materials
,”
Rev. Mod. Phys.
93
,
025006
(
2021
).
7.
K.-P.
Bohnen
,
R.
Heid
, and
M.
Krauss
, “
Phonon dispersion and electron-phonon interaction for YBa2Cu3O7 from first-principles calculations
,”
Europhys. Lett.
64
,
104
(
2003
).
8.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
, “
Small phonon contribution to the photoemission kink in the copper oxide superconductors
,”
Nature
452
,
975
978
(
2008
).
9.
R.
Heid
,
R.
Zeyher
,
D.
Manske
, and
K.-P.
Bohnen
, “
Phonon-induced pairing interaction in YBa2Cu3O7 within the local-density approximation
,”
Phys. Rev. B
80
,
024507
(
2009
).
10.
L. N.
Cooper
, “
Bound electron pairs in a degenerate fermi gas
,”
Phys. Rev.
104
,
1189
1190
(
1956
).
11.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Microscopic theory of superconductivity
,”
Phys. Rev.
106
,
162
164
(
1957
).
12.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
,
1175
1204
(
1957
).
13.
R. J.
McQueeney
,
J. L.
Sarrao
,
P. G.
Pagliuso
,
P. W.
Stephens
, and
R.
Osborn
, “
Mixed lattice and electronic states in high-temperature superconductors
,”
Phys. Rev. Lett.
87
,
077001
(
2001
).
14.
D.
Reznik
,
L.
Pintschovius
,
M.
Ito
,
S.
Iikubo
,
M.
Sato
,
H.
Goka
,
M.
Fujita
,
K.
Yamada
,
G.
Gu
, and
J.
Tranquada
, “
Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors
,”
Nature
440
,
1170
1173
(
2006
).
15.
A.
Lanzara
,
P.
Bogdanov
,
X.
Zhou
,
S.
Kellar
,
D.
Feng
,
E.
Lu
,
T.
Yoshida
,
H.
Eisaki
,
A.
Fujimori
,
K.
Kishio
et al, “
Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors
,”
Nature
412
,
510
514
(
2001
).
16.
M.
d’Astuto
,
P. K.
Mang
,
P.
Giura
,
A.
Shukla
,
P.
Ghigna
,
A.
Mirone
,
M.
Braden
,
M.
Greven
,
M.
Krisch
, and
F.
Sette
, “
Anomalous dispersion of longitudinal optical phonons in Nd1.86Ce0.14CuO4+δ determined by inelastic x-ray scattering
,”
Phys. Rev. Lett.
88
,
167002
(
2002
).
17.
R. J.
McQueeney
,
Y.
Petrov
,
T.
Egami
,
M.
Yethiraj
,
G.
Shirane
, and
Y.
Endoh
, “
Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures
,”
Phys. Rev. Lett.
82
,
628
631
(
1999
).
18.
G.-H.
Gweon
,
T.
Sasagawa
,
S. Y.
Zhou
,
J.
Graf
,
H.
Takagi
,
D.-H.
Lee
, and
A.
Lanzara
, “
An unusual isotope effect in a high-transition-temperature superconductor
,”
Nature
430
,
187
190
(
2004
).
19.
Y.
He
,
M.
Hashimoto
,
D.
Song
,
S.-D.
Chen
,
J.
He
,
I.
Vishik
,
B.
Moritz
,
D.-H.
Lee
,
N.
Nagaosa
,
J.
Zaanen
et al, “
Rapid change of superconductivity and electron-phonon coupling through critical doping in Bi-2212
,”
Science
362
,
62
65
(
2018
).
20.
S.
Dal Conte
,
C.
Giannetti
,
G.
Coslovich
,
F.
Cilento
,
D.
Bossini
,
T.
Abebaw
,
F.
Banfi
,
G.
Ferrini
,
H.
Eisaki
,
M.
Greven
et al, “
Disentangling the electronic and phononic glue in a high-TC superconductor
,”
Science
335
,
1600
1603
(
2012
).
21.
Y.
Zhang
,
C.
Lane
,
J. W.
Furness
,
B.
Barbiellini
,
J. P.
Perdew
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
Competing stripe and magnetic phases in the cuprates from first principles
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
68
72
(
2020
).
22.
J. W.
Furness
,
Y.
Zhang
,
C.
Lane
,
I. G.
Buda
,
B.
Barbiellini
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors
,”
Commun. Phys.
1
,
11
(
2018
).
23.
C.
Lane
,
J. W.
Furness
,
I. G.
Buda
,
Y.
Zhang
,
R. S.
Markiewicz
,
B.
Barbiellini
,
J.
Sun
, and
A.
Bansil
, “
Antiferromagnetic ground state of La2CuO4: A parameter-free ab initio description
,”
Phys. Rev. B
98
,
125140
(
2018
).
24.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
954
(
1991
).
25.
M.
Cococcioni
and
S.
de Gironcoli
, “
Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
,”
Phys. Rev. B
71
,
035105
(
2005
).
26.
D.
Kasinathan
,
J.
Kunes
,
K.
Koepernik
,
C. V.
Diaconu
,
R. L.
Martin
,
I. D.
Prodan
,
G. E.
Scuseria
,
N.
Spaldin
,
L.
Petit
,
T. C.
Schulthess
, and
W. E.
Pickett
, “
Mott transition of MnO under pressure: A comparison of correlated band theories
,”
Phys. Rev. B
74
,
195110
(
2006
).
27.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
28.
T. C.
Sterling
and
D.
Reznik
, “
Effect of the electronic charge gap on LO bond-stretching phonons in undoped La2CuO4 calculated using LDA+U
,”
Phys. Rev. B
104
,
134311
(
2021
).
29.
T.
Jarlborg
,
B.
Barbiellini
,
C.
Lane
,
Y. J.
Wang
,
R.
Markiewicz
,
Z.
Liu
,
Z.
Hussain
, and
A.
Bansil
, “
Electronic structure and excitations in oxygen deficient CeO2−δ from DFT calculations
,”
Phys. Rev. B
89
,
165101
(
2014
).
30.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
31.
J.
Ning
,
C.
Lane
,
Y.
Zhang
,
M.
Matzelle
,
B.
Singh
,
B.
Barbiellini
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
Critical role of magnetic moments in the lattice dynamics of YBa2Cu3O6
,”
Phys. Rev. B
107
,
045126
(
2023
).
32.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
33.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
et al, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
(
2016
).
34.
Y.
Zhang
,
J.
Furness
,
R.
Zhang
,
Z.
Wang
,
A.
Zunger
, and
J.
Sun
, “
Symmetry-breaking polymorphous descriptions for correlated materials without interelectronic U
,”
Phys. Rev. B
102
,
045112
(
2020
).
35.
Y.
Zhang
,
J. W.
Furness
,
B.
Xiao
, and
J.
Sun
, “
Subtlety of TiO2 phase stability: Reliability of the density functional theory predictions and persistence of the self-interaction error
,”
J. Chem. Phys.
150
,
014105
(
2019
).
36.
D. A.
Kitchaev
,
H.
Peng
,
Y.
Liu
,
J.
Sun
,
J. P.
Perdew
, and
G.
Ceder
, “
Energetics of MnO2 polymorphs in density functional theory
,”
Phys. Rev. B
93
,
045132
(
2016
).
37.
H.
Peng
and
J. P.
Perdew
, “
Synergy of van der Waals and self-interaction corrections in transition metal monoxides
,”
Phys. Rev. B
96
,
100101
(
2017
).
38.
J.
Ning
,
Y.
Zhu
,
J.
Kidd
,
Y.
Guan
,
Y.
Wang
,
Z.
Mao
, and
J.
Sun
, “
Subtle metastability of the layered magnetic topological insulator MnBi2Te4 from weak interactions
,”
npj Comput. Mater.
6
,
157
(
2020
).
39.
C.
Lane
,
Y.
Zhang
,
J. W.
Furness
,
R. S.
Markiewicz
,
B.
Barbiellini
,
J.
Sun
, and
A.
Bansil
, “
First-principles calculation of spin and orbital contributions to magnetically ordered moments in Sr2IrO4
,”
Phys. Rev. B
101
,
155110
(
2020
).
40.
K.
Pokharel
,
C.
Lane
,
J. W.
Furness
,
R.
Zhang
,
J.
Ning
,
B.
Barbiellini
,
R. S.
Markiewicz
,
Y.
Zhang
,
A.
Bansil
, and
J.
Sun
, “
Sensitivity of the electronic and magnetic structures of cuprate superconductors to density functional approximations
,”
npj Comput. Mater.
8
,
31
(
2022
).
41.
R.
Zhang
,
B.
Singh
,
C.
Lane
,
J.
Kidd
,
Y.
Zhang
,
B.
Barbiellini
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
Critical role of magnetic moments in heavy-fermion materials: Revisiting SmB6
,”
Phys. Rev. B
105
,
195134
(
2022
).
42.
J.
Ning
,
J. W.
Furness
, and
J.
Sun
, “
Reliable lattice dynamics from an efficient density functional approximation
,”
Chem. Mater.
34
,
2562
2568
(
2022
).
43.
J.
Ning
,
M.
Kothakonda
,
J. W.
Furness
,
A. D.
Kaplan
,
S.
Ehlert
,
J. G.
Brandenburg
,
J. P.
Perdew
, and
J.
Sun
, “
Workhorse minimally empirical dispersion-corrected density functional with tests for weakly bound systems: r2SCAN + rVV10
,”
Phys. Rev. B
106
,
075422
(
2022
).
44.
M. A.
Mathis
,
A.
Khanolkar
,
L.
Fu
,
M. S.
Bryan
,
C. A.
Dennett
,
K.
Rickert
,
J. M.
Mann
,
B.
Winn
,
D. L.
Abernathy
,
M. E.
Manley
,
D. H.
Hurley
, and
C. A.
Marianetti
, “
Generalized quasiharmonic approximation via space group irreducible derivatives
,”
Phys. Rev. B
106
,
014314
(
2022
).
45.
E.
Xiao
,
H.
Ma
,
M. S.
Bryan
,
L.
Fu
,
J. M.
Mann
,
B.
Winn
,
D. L.
Abernathy
,
R. P.
Hermann
,
A. R.
Khanolkar
,
C. A.
Dennett
,
D. H.
Hurley
,
M. E.
Manley
, and
C. A.
Marianetti
, “
Validating first-principles phonon lifetimes via inelastic neutron scattering
,”
Phys. Rev. B
106
,
144310
(
2022
).
46.
S.
Bandi
and
C. A.
Marianetti
, “
Precisely computing phonons via irreducible derivatives
,”
Phys. Rev. B
107
,
174302
(
2023
).
47.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
48.
C.
Falter
,
M.
Klenner
, and
W.
Ludwig
, “
Effect of charge fluctuations on the phonon dispersion and electron-phonon interaction in La2CuO4
,”
Phys. Rev. B
47
,
5390
5404
(
1993
).
49.
S.
Zhou
,
H.
Ma
,
E.
Xiao
,
K.
Gofryk
,
C.
Jiang
,
M. E.
Manley
,
D. H.
Hurley
, and
C. A.
Marianetti
, “
Capturing the ground state of uranium dioxide from first principles: Crystal distortion, magnetic structure, and phonons
,”
Phys. Rev. B
106
,
125134
(
2022
).
50.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals
,”
J. Chem. Phys.
156
,
034109
(
2022
).
51.
A. D.
Kaplan
,
M.
Levy
, and
J. P.
Perdew
, “
The predictive power of exact constraints and appropriate norms in density functional theory
,”
Annu. Rev. Phys. Chem.
74
,
193
218
(
2023
).
52.
J.
Tao
,
F.
Zheng
,
J.
Gebhardt
,
J. P.
Perdew
, and
A. M.
Rappe
, “
Screened van der Waals correction to density functional theory for solids
,”
Phys. Rev. Mater.
1
,
020802
(
2017
).
53.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
54.
E.
Caldeweyher
,
J.-M.
Mewes
,
S.
Ehlert
, and
S.
Grimme
, “
Extension and evaluation of the D4 London-dispersion model for periodic systems
,”
Phys. Chem. Chem. Phys.
22
,
8499
8512
(
2020
).
55.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
, “
A generally applicable atomic-charge dependent London dispersion correction
,”
J. Chem. Phys.
150
,
154122
(
2019
).
56.
S.
Ehlert
,
U.
Huniar
,
J.
Ning
,
J. W.
Furness
,
J.
Sun
,
A. D.
Kaplan
,
J. P.
Perdew
, and
J. G.
Brandenburg
, “
r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications
,”
J. Chem. Phys.
154
,
061101
(
2021
).
57.
J.
Tao
and
Y.
Mo
, “
Accurate semilocal density functional for condensed-matter physics and quantum chemistry
,”
Phys. Rev. Lett.
117
,
073001
(
2016
).
58.
S.
Jana
,
K.
Sharma
, and
P.
Samal
, “
Improving the performance of Tao-Mo non-empirical density functional with broader applicability in quantum chemistry and materials science
,”
J. Phys. Chem. A
123
,
6356
6369
(
2019
).
59.
S.
Jana
,
S. K.
Behera
,
S.
Śmiga
,
L. A.
Constantin
, and
P.
Samal
, “
Accurate density functional made more versatile
,”
J. Chem. Phys.
155
,
024103
(
2021
).
60.
J. W.
Furness
,
N.
Sengupta
,
J.
Ning
,
A.
Ruzsinszky
, and
J.
Sun
, “
Examining the order-of-limits problem and lattice constant performance of the Tao-Mo functional
,”
J. Chem. Phys.
152
,
244112
(
2020
).
61.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
62.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
63.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
64.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
(
1993
).
65.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
66.
R. J.
Cava
,
A. W.
Hewat
,
E. A.
Hewat
,
B.
Batlogg
,
M.
Marezio
,
K. M.
Rabe
,
J. J.
Krajewski
,
W. F.
Peck
, Jr.
, and
L. W.
Rupp
, Jr.
, “
Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox
,”
Physica C
165
,
419
433
(
1990
).
67.
H.
Casalta
,
P.
Schleger
,
E.
Brecht
,
W.
Montfrooij
,
N. H.
Andersen
,
B.
Lebech
,
W. W.
Schmahl
,
H.
Fuess
,
R.
Liang
,
W. N.
Hardy
, and
T.
Wolf
, “
Absence of a second antiferromagnetic transition in pure YBa2Cu3O6+x
,”
Phys. Rev. B
50
,
9688
9691
(
1994
).
68.
S.
Chaplot
,
W.
Reichardt
,
L.
Pintschovius
, and
N.
Pyka
, “
Common interatomic potential model for the lattice dynamics of several cuprates
,”
Phys. Rev. B
52
,
7230
(
1995
).
69.
R. B.
Wexler
,
G. S.
Gautam
, and
E. A.
Carter
, “
Exchange-correlation functional challenges in modeling quaternary chalcogenides
,”
Phys. Rev. B
102
,
054101
(
2020
).
70.
M.
Kothakonda
,
A. D.
Kaplan
,
E. B.
Isaacs
,
C. J.
Bartel
,
J. W.
Furness
,
J.
Ning
,
C.
Wolverton
,
J. P.
Perdew
, and
J.
Sun
, “
Testing the r2SCAN density functional for the thermodynamic stability of solids with and without a van der Waals correction
,”
ACS Mater. Au
3
,
102
111
(
2022
).
71.
H.
Peng
and
J. P.
Perdew
, “
Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials
,”
Phys. Rev. B
95
,
081105
(
2017
).
72.
C.
Falter
,
M.
Klenner
,
G. A.
Hoffmann
, and
F.
Schnetgöke
, “
Dipole polarization and charge transfer effects in the lattice dynamics and dielectric properties of ionic crystals
,”
Phys. Rev. B
60
,
12051
12060
(
1999
).
73.
C.
Falter
, “
Phonons, electronic charge response and electron–phonon interaction in the high-temperature superconductors
,”
Phys. Status Solidi B
242
,
78
117
(
2005
).
74.
A. D.
Kaplan
and
J. P.
Perdew
, “
Laplacian-level meta-generalized gradient approximation for solid and liquid metals
,”
Phys. Rev. Mater.
6
,
083803
(
2022
).
75.
L.
Pintschovius
,
D.
Reznik
,
W.
Reichardt
,
Y.
Endoh
,
H.
Hiraka
,
J. M.
Tranquada
,
H.
Uchiyama
,
T.
Masui
, and
S.
Tajima
, “
Oxygen phonon branches in YBa2Cu3O7
,”
Phys. Rev. B
69
,
214506
(
2004
).
76.
S.
Jana
,
A.
Patra
, and
P.
Samal
, “
Assessing the performance of the Tao-Mo semilocal density functional in the projector-augmented-wave method
,”
J. Chem. Phys.
149
,
044120
(
2018
).
77.
D. M.
Juraschek
,
M.
Fechner
,
A. V.
Balatsky
, and
N. A.
Spaldin
, “
Dynamical multiferroicity
,”
Phys. Rev. Mater.
1
,
014401
(
2017
).
78.
A.
de la Torre
,
K. L.
Seyler
,
L.
Zhao
,
S. D.
Matteo
,
M. S.
Scheurer
,
Y.
Li
,
B.
Yu
,
M.
Greven
,
S.
Sachdev
,
M. R.
Norman
, and
D.
Hsieh
, “
Mirror symmetry breaking in a model insulating cuprate
,”
Nat. Phys.
17
,
777
781
(
2021
).
79.
A.
de la Torre
,
S.
Di Matteo
,
D.
Hsieh
, and
M.
Norman
, “
Implications of second harmonic generation for hidden order in Sr2CuO2Cl2
,”
Phys. Rev. B
104
,
035138
(
2021
).
80.
I.
Ahmadova
,
T. C.
Sterling
,
A. C.
Sokolik
,
D. L.
Abernathy
,
M.
Greven
, and
D.
Reznik
, “
Phonon spectrum of underdoped HgBa2CuO4+δ investigated by neutron scattering
,”
Phys. Rev. B
101
,
184508
(
2020
).
81.
J. B.
Curtis
,
A.
Grankin
,
N. R.
Poniatowski
,
V. M.
Galitski
,
P.
Narang
, and
E.
Demler
, “
Cavity magnon-polaritons in cuprate parent compounds
,”
Phys. Rev. Res.
4
,
013101
(
2022
).
You do not currently have access to this content.