Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light–matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light–matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light–matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.

1.
A. B.
Harris
,
R. D.
Kamien
, and
T. C.
Lubensky
, Molecular chirality and chiral parameters.
2.
C.
Lee
,
J. M.
Weber
,
L. E.
Rodriguez
,
R. Y.
Sheppard
,
L. M.
Barge
,
E. L.
Berger
, and
A. S.
Burton
, “
Chirality in organic and mineral systems: A review of reactivity and alteration processes relevant to prebiotic chemistry and life detection missions
,”
Symmetry
14
(
3
),
460
(
2022
).
3.
J. S.
Wang
,
G.
Wang
,
X. Q.
Feng
,
T.
Kitamura
,
Y. L.
Kang
,
S. W.
Yu
, and
Q. H.
Qin
, “
Hierarchical chirality transfer in the growth of towel gourd tendrils
,”
Sci. Rep.
3
,
3102
(
2013
).
4.
Y. H.
Tee
,
T.
Shemesh
,
V.
Thiagarajan
,
R. F.
Hariadi
,
K. L.
Anderson
,
C.
Page
,
N.
Volkmann
,
D.
Hanein
,
S.
Sivaramakrishnan
,
M. M.
Kozlov
, and
A. D.
Bershadsky
, “
Cellular chirality arising from the self-organization of the actin cytoskeleton
,”
Nat. Cell Biol.
17
(
4
),
445
457
(
2015
).
5.
N. H.
Cho
,
A.
Guerrero-Martínez
,
J.
Ma
,
S.
Bals
,
N. A.
Kotov
,
L. M.
Liz-Marzán
, and
K. T.
Nam
, “
Bioinspired chiral inorganic nanomaterials
,”
Nat. Rev. Bioeng.
1
(
2
),
88
106
(
2023
).
6.
M.
Inaki
,
J.
Liu
, and
K.
Matsuno
, “
Cell chirality: Its origin and roles in left-right asymmetric development
,”
Philos. Trans. R. Soc., B
371
(
1710
),
20150403
(
2016
).
7.
J. E.
McMurry
,
Organic Chemistry with Biological Applications
(
Cengage Learning
,
2014
).
8.
S. K.
Kuncha
,
S. P.
Kruparani
, and
R.
Sankaranarayanan
, “
Chiral checkpoints during protein biosynthesis
,”
J. Biol. Chem.
294
(
45
),
16535
16548
(
2019
).
9.
P. H.
Chuong
,
L. A.
Nguyen
, and
H.
He
, “
Chiral drugs: An overview
,”
Int. J. Biomed. Sci.
2
(
2
),
85
100
(
2006
).
10.
Z.
Vager
,
R.
Naaman
, and
E. P.
Kanter
, “
Coulomb explosion imaging of small molecules
,”
Science
244
(
4903
),
426
431
(
1989
).
11.
T.
Kitamura
,
T.
Nishide
,
H.
Shiromaru
,
Y.
Achiba
, and
N.
Kobayashi
, “
Direct observation of ‘dynamic’ chirality by Coulomb explosion imaging
,”
J. Chem. Phys.
115
(
1
),
5
6
(
2001
).
12.
E. M.
Bringa
and
R. E.
Johnson
, “
Coulomb explosion and thermal spikes
,”
Phys. Rev. Lett.
88
(
16
),
165501
(
2002
).
13.
T. E.
Beesley
and
R. P. W.
Scott
,
Chiral Chromatography
(
John Wiley & Sons
,
1999
).
14.
L. D.
Barron
, Molecular light scattering and optical activity,
2004
.
15.
A. M.
Glazer
and
K.
Stadnicka
, “
On the origin of optical activity in crystal structures
,”
J. Appl. Crystallogr.
19
(
2
),
108
122
(
1986
).
16.
F. G.
Fasman
,
Circular Dichroism and the Conformational Analysis of Biomolecules
(
Springer
,
1996
).
17.
N. J.
Greenfield
, “
Using circular dichroism spectra to estimate protein secondary structure
,”
Nat. Protoc.
1
(
6
),
2876
2890
(
2006
).
18.
B.
Ranjbar
and
P.
Gill
, “
Circular dichroism techniques: Biomolecular and nanostructural analyses- A review
,”
Chem. Biol. Drug Des.
74
(
2
),
101
120
(
2009
).
19.
H.
Okamoto
, “
Local optical activity of nano- to microscale materials and plasmons
,”
J. Mater. Chem. C
7
(
47
),
14771
14787
(
2019
).
20.
M.
Hentschel
,
M.
Schäferling
,
X.
Duan
,
H.
Giessen
, and
N.
Liu
, “
Chiral plasmonics
,”
Sci. Adv.
3
(
5
),
e1602735
(
2017
).
21.
J. D.
Jackson
, Classical electrodynamics,
1998
.
22.
V.
Lindell
,
A. H.
Sihvola
,
S. A.
Tretyakov
, and
A. J.
Viitanen
, Electromagnetic waves in chiral and bi-isotropic media,
1994
.
23.
J.
Mun
,
M.
Kim
,
Y.
Yang
,
T.
Badloe
,
J.
Ni
,
Y.
Chen
,
C. W.
Qiu
, and
J.
Rho
, “
Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena
,”
Light Sci. Appl.
9
(
1
),
139
(
2020
).
24.
S. S.
Oh
and
O.
Hess
, “
Chiral metamaterials: Enhancement and control of optical activity and circular dichroism
,”
Nano Convergence
2
(
1
),
24
(
2015
).
25.
J. S.
Eismann
,
M.
Neugebauer
, and
P.
Banzer
, “
Exciting a chiral dipole moment in an achiral nanostructure
,”
Optica
5
(
8
),
954
959
(
2018
).
26.
C.
Kittel
and
P.
McEuen
,
Introduction to Solid State Physics
(
John Wiley & Sons
,
2018
).
27.
D. M.
Lipkin
, “
Existence of a new conservation law in electromagnetic theory
,”
J. Math. Phys.
5
(
5
),
696
700
(
2004
).
28.
M. L.
Solomon
,
J.
Hu
,
M.
Lawrence
,
A.
García-Etxarri
, and
J. A.
Dionne
, “
Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces
,”
ACS Photonics
6
(
1
),
43
49
(
2019
).
29.
Y.
Tang
and
A. E.
Cohen
, “
Optical chirality and its interaction with matter
,”
Phys. Rev. Lett.
104
(
16
),
163901
(
2010
).
30.
Y.
Tang
and
A. E.
Cohen
, “
Enhanced enantioselectivity in excitation of chiral molecules by superchiral light
,”
Science
332
(
6027
),
333
336
(
2011
).
31.
S. A.
Maier
, Plasmonics: Fundamentals and applications,
2007
.
32.
W. A.
Murray
and
W. L.
Barnes
, “
Plasmonic materials
,”
Adv. Mater.
19
(
22
),
3771
3782
(
2007
).
33.
D. K.
Gramotnev
and
S. I.
Bozhevolnyi
, “
Plasmonics beyond the diffraction limit
,”
Nat. Photonics
4
(
2
),
83
91
(
2010
).
34.
E.
Ozbay
, “
Plasmonics: Merging photonics and electronics at nanoscale dimensions
,”
Science
311
(
5758
),
189
193
(
2006
).
35.
B.
Lee
,
I.-M.
Lee
,
S.
Kim
,
D.-H.
Oh
, and
L.
Hesselink
, “
Review on subwavelength confinement of light with plasmonics
,”
J. Mod. Opt.
57
(
16
),
1479
1497
(
2010
).
36.
C.
Kittel
and
P.
McEuen
,
Introduction to Solid State Physics
(
John Wiley & Sons
,
2018
).
37.
Y. Y.
Lee
,
R. M.
Kim
,
S. W.
Im
,
M.
Balamurugan
, and
K. T.
Nam
, “
Plasmonic metamaterials for chiral sensing applications
,”
Nanoscale
12
(
1
),
58
66
(
2020
).
38.
J.
Feis
,
D.
Beutel
,
J.
Köpfler
,
X.
Garcia-Santiago
,
C.
Rockstuhl
,
M.
Wegener
, and
I.
Fernandez-Corbaton
, “
Helicity-preserving optical cavity modes for enhanced sensing of chiral molecules
,”
Phys. Rev. Lett.
124
(
3
),
033201
(
2020
).
39.
E.
Mohammadi
,
T. V.
Raziman
, and
A. G.
Curto
, “
Nanophotonic chirality transfer to dielectric Mie resonators
,”
Nano Lett.
23
(
9
),
3978
3984
(
2023
).
40.
M. V.
Gorkunov
,
A. A.
Antonov
, and
Y. S.
Kivshar
, “
Metasurfaces with maximum chirality empowered by bound states in the continuum
,”
Phys. Rev. Lett.
125
(
9
),
093903
(
2020
).
41.
E.
Wijaya
,
C.
Lenaerts
,
S.
Maricot
,
J.
Hastanin
,
S.
Habraken
,
J. P.
Vilcot
,
R.
Boukherroub
, and
S.
Szunerits
, “
Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies
,”
Curr. Opin. Solid State Mater. Sci.
15
(
5
),
208
224
(
2011
).
42.
G.
Liang
,
Z.
Luo
,
K.
Liu
,
Y.
Wang
,
J.
Dai
, and
Y.
Duan
, “
Fiber optic surface plasmon resonance–based biosensor technique: Fabrication, advancement, and application
,”
Crit. Rev. Anal. Chem.
46
(
3
),
213
223
(
2016
).
43.
L. J.
Sherry
,
S.-H.
Chang
,
G. C.
Schatz
,
R. P.
Van Duyne
,
B. J.
Wiley
, and
Y.
Xia
, “
Localized surface plasmon resonance spectroscopy of single silver nanocubes
,”
Nano Lett.
5
(
10
),
2034
2038
(
2005
).
44.
R.
Li
,
K.
Liu
,
S.
Pan
, and
J. H.
Ding
, “
Localized surface plasmon resonance of single silver nano-hemisphere
,”
Adv. Mater. Res.
818
,
137
140
(
2013
).
45.
L. S.
Jung
,
C. T.
Campbell
,
T. M.
Chinowsky
,
M. N.
Mar
, and
S. S.
Yee
, “
Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films
,”
Langmuir
14
(
19
),
5636
5648
(
1998
).
46.
H.
Zhang
and
A. O.
Govorov
, “
Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals
,”
Phys. Rev. B
87
(
7
),
075410
(
2013
).
47.
A. O.
Govorov
,
Z.
Fan
,
P.
Hernandez
,
J. M.
Slocik
, and
R. R.
Naik
, “
Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects
,”
Nano Lett.
10
(
4
),
1374
1382
(
2010
).
48.
M.
Schäferling
,
X.
Yin
, and
H.
Giessen
, “
Formation of chiral fields in a symmetric environment
,”
Opt. Express
20
(
24
),
26326
(
2012
).
49.
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
de Nijs
,
R.
Esteban
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Single-molecule optomechanics in ‘picocavities’
,”
Science
354
(
6313
),
726
729
(
2016
).
50.
M.
Schäferling
,
D.
Dregely
,
M.
Hentschel
, and
H.
Giessen
, “
Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures
,”
Phys. Rev. X
2
(
3
),
031010
(
2012
).
51.
M.
Schäferling
,
N.
Engheta
,
H.
Giessen
, and
T.
Weiss
, “
Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration
,”
ACS Photonics
3
(
6
),
1076
1084
(
2016
).
52.
D. L.
Jaggard
,
A. R.
Mickelson
, and
C. H.
Papas
, “
On electromagnetic waves in chiral media
,”
Appl. Phys.
18
,
211
216
(
1979
).
53.
L.
Hu
,
Y.
Huang
,
L.
Pan
, and
Y.
Fang
, “
Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes
,”
Sci. Rep.
7
(
1
),
11151
(
2017
).
54.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R. V.
Mikhaylovskiy
,
A. J.
Lapthorn
,
S. M.
Kelly
,
L. D.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
, “
Ultrasensitive detection and characterization of biomolecules using superchiral fields
,”
Nat. Nanotechnol.
5
(
11
),
783
787
(
2010
).
55.
R.
Tullius
,
A. S.
Karimullah
,
M.
Rodier
,
B.
Fitzpatrick
,
N.
Gadegaard
,
L. D.
Barron
,
V. M.
Rotello
,
G.
Cooke
,
A.
Lapthorn
, and
M.
Kadodwala
, “
‘Superchiral’ spectroscopy: Detection of protein higher order hierarchical structure with chiral plasmonic nanostructures
,”
J. Am. Chem. Soc.
137
(
26
),
8380
8383
(
2015
).
56.
C.
Kelly
,
R.
Tullius
,
A. J.
Lapthorn
,
N.
Gadegaard
,
G.
Cooke
,
L. D.
Barron
,
A. S.
Karimullah
,
V. M.
Rotello
, and
M.
Kadodwala
, “
Chiral plasmonic fields probe structural order of biointerfaces
,”
J. Am. Chem. Soc.
140
(
27
),
8509
8517
(
2018
).
57.
T.
Kakkar
,
C.
Keijzer
,
M.
Rodier
,
T.
Bukharova
,
M.
Taliansky
,
A. J.
Love
,
J. J.
Milner
,
A. S.
Karimullah
,
L. D.
Barron
,
N.
Gadegaard
,
A. J.
Lapthorn
, and
M.
Kadodwala
, “
Superchiral near fields detect virus structure
,”
Light Sci. Appl.
9
(
1
),
195
(
2020
).
58.
Y.
Zhao
,
A. N.
Askarpour
,
L.
Sun
,
J.
Shi
,
X.
Li
, and
A.
Alù
, “
Chirality detection of enantiomers using twisted optical metamaterials
,”
Nat. Commun.
8
,
14180
(
2017
).
59.
S. J.
Yoo
and
Q. H.
Park
, “
Metamaterials and chiral sensing: A review of fundamentals and applications
,”
Nanophotonics
8
(
2
),
249
261
(
2019
).
60.
S.
Yoo
and
Q. H.
Park
, “
Chiral light-matter interaction in optical resonators
,”
Phys. Rev. Lett.
114
(
20
),
203003
(
2015
).
61.
S.
Both
,
M.
Schäferling
,
F.
Sterl
,
E. A.
Muljarov
,
H.
Giessen
, and
T.
Weiss
, “
Nanophotonic chiral sensing: How does it actually work?
,”
ACS Nano
16
(
2
),
2822
2832
(
2022
).
62.
W.
Zhang
and
O. J. F.
Martin
, “
A universal law for plasmon resonance shift in biosensing
,”
ACS Photonics
2
(
1
),
144
150
(
2015
).
63.
T.
Weiss
,
M.
Mesch
,
M.
Schäferling
,
H.
Giessen
,
W.
Langbein
, and
E. A.
Muljarov
, “
From dark to bright: First-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing
,”
Phys. Rev. Lett.
116
(
23
),
237401
(
2016
).
64.
M.
Mesch
,
T.
Weiss
,
M.
Schäferling
,
M.
Hentschel
,
R. S.
Hegde
, and
H.
Giessen
, “
Highly sensitive refractive index sensors with plasmonic nanoantennas−Utilization of optimal spectral detuning of fano resonances
,”
ACS Sens.
3
(
5
),
960
966
(
2018
).
65.
J.
Yang
,
H.
Giessen
, and
P.
Lalanne
, “
Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing
,”
Nano Lett.
15
(
5
),
3439
3444
(
2015
).
66.
Y.
Shen
,
J.
Zhou
,
T.
Liu
,
Y.
Tao
,
R.
Jiang
,
M.
Liu
,
G.
Xiao
,
J.
Zhu
,
Z. K.
Zhou
,
X.
Wang
,
C.
Jin
, and
J.
Wang
, “
Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit
,”
Nat. Commun.
4
,
2381
(
2013
).
67.
Y.
Huang
,
C.
Min
,
P.
Dastmalchi
, and
G.
Veronis
, “
Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors
,”
Opt. Express
23
(
11
),
14922
(
2015
).
68.
G. J.
Nusz
,
S. M.
Marinakos
,
A. C.
Curry
,
A.
Dahlin
,
F.
Hook
,
A.
Wax
, and
A.
Chilkoti
, “
Label-free plasmonic detection of biomolecular binding by a single gold nanorod
,”
Anal. Chem.
80
(
4
),
984
989
(
2008
).
69.
L.
Polavarapu
,
J.
Pérez-Juste
,
Q. H.
Xu
, and
L. M.
Liz-Marzán
, “
Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles
,”
J. Mater. Chem. C
2
(
36
),
7460
7476
(
2014
).
70.
K. V.
Sreekanth
,
Y.
Alapan
,
M.
Elkabbash
,
E.
Ilker
,
M.
Hinczewski
,
U. A.
Gurkan
,
A.
De Luca
, and
G.
Strangi
, “
Extreme sensitivity biosensing platform based on hyperbolic metamaterials
,”
Nat. Mater.
15
(
6
),
621
627
(
2016
).
71.
S.
Yoo
and
Q. H.
Park
, “
Enhancement of chiroptical signals by circular differential Mie scattering of nanoparticles
,”
Sci. Rep.
5
,
14463
(
2015
).
72.
H. E.
Lee
,
H. Y.
Ahn
,
J.
Mun
,
Y. Y.
Lee
,
M.
Kim
,
N. H.
Cho
,
K.
Chang
,
W. S.
Kim
,
J.
Rho
, and
K. T.
Nam
, “
Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles
,”
Nature
556
(
7701
),
360
364
(
2018
).
73.
H.-E.
Lee
,
R. M.
Kim
,
H.-Y.
Ahn
,
Y. Y.
Lee
,
G. H.
Byun
,
S. W.
Im
,
J.
Mun
,
J.
Rho
, and
K. T.
Nam
, “
Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles
,”
Nat. Commun.
11
(
1
),
263
(
2020
).
74.
H.
Kim
,
S. W.
Im
,
N. H.
Cho
,
D. H.
Seo
,
R. M.
Kim
,
Y.
Lim
,
H.
Lee
,
H.
Ahn
, and
K. T.
Nam
, “
γ-glutamylcysteine- and cysteinylglycine-directed growth of chiral gold nanoparticles and their crystallographic analysis
,”
Angew. Chem.
132
(
31
),
13076
13083
(
2020
).
75.
N. H.
Cho
,
Y. B.
Kim
,
Y. Y.
Lee
,
S. W.
Im
,
R. M.
Kim
,
J. W.
Kim
,
S. D.
Namgung
,
H.-E.
Lee
,
H.
Kim
,
J. H.
Han
et al, “
Adenine oligomer directed synthesis of chiral gold nanoparticles
,”
Nat. Commun.
13
(
1
),
3831
(
2022
).
76.
S. W.
Im
,
E.
Jo
,
R. M.
Kim
,
J. H.
Han
, and
K. T.
Nam
, “
32-symmetric chiral gold nanoplates with near-infrared circular dichroism
,”
Adv. Opt. Mater.
11
,
2300037
(
2023
).
77.
N. H.
Cho
,
G. H.
Byun
,
Y. C.
Lim
,
S. W.
Im
,
H.
Kim
,
H. E.
Lee
,
H. Y.
Ahn
, and
K. T.
Nam
, “
Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle
,”
ACS Nano
14
(
3
),
3595
3602
(
2020
).
78.
J. W.
Kim
,
N. H.
Cho
,
Y.-C.
Lim
,
S. W.
Im
,
J. H.
Han
, and
K. T.
Nam
, “
Controlling the size and circular dichroism of chiral gold helicoids
,”
Mater. Adv.
2
(
21
),
6988
6995
(
2021
).
79.
Y. Y.
Lee
,
N. H.
Cho
,
S. W.
Im
,
H. E.
Lee
,
H. Y.
Ahn
, and
K. T.
Nam
, “
Chiral 432 helicoid II nanoparticle synthesized with glutathione and poly(T)20 nucleotide
,”
ChemNanoMat
6
(
3
),
362
367
(
2020
).
80.
S. W.
Im
,
H. Y.
Ahn
,
R. M.
Kim
,
N. H.
Cho
,
H.
Kim
,
Y. C.
Lim
,
H. E.
Lee
, and
K. T.
Nam
, “
Chiral surface and geometry of metal nanocrystals
,”
Adv. Mater.
32
(
41
),
1905758
(
2020
).
81.
H. Y.
Ahn
,
S.
Yoo
,
N. H.
Cho
,
R. M.
Kim
,
H.
Kim
,
J. H.
Huh
,
S.
Lee
, and
K. T.
Nam
, “
Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials
,”
Acc. Chem. Res.
52
(
10
),
2768
2783
(
2019
).
82.
R. M.
Kim
,
J. H.
Huh
,
S. J.
Yoo
,
T. G.
Kim
,
C.
Kim
,
H.
Kim
,
J. H.
Han
,
N. H.
Cho
,
Y. C.
Lim
,
S. W.
Im
,
E. J.
Im
,
J. R.
Jeong
,
M. H.
Lee
,
T. Y.
Yoon
,
H. Y.
Lee
,
Q. H.
Park
,
S.
Lee
, and
K. T.
Nam
, “
Enantioselective sensing by collective circular dichroism
,”
Nature
612
(
7940
),
470
476
(
2022
).
83.
B.
Auguié
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
(
14
),
143902
(
2008
).
84.
E.
Shahmoon
,
D. S.
Wild
,
M. D.
Lukin
, and
S. F.
Yelin
, “
Cooperative resonances in light scattering from two-dimensional atomic arrays
,”
Phys. Rev. Lett.
118
(
11
),
113601
(
2017
).
85.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
(
12
),
5912
5951
(
2018
).
86.
J.-K.
Ryu
,
D.
Min
,
S.-H.
Rah
,
S. J.
Kim
,
Y.
Park
,
H.
Kim
,
C.
Hyeon
,
H. M.
Kim
,
R.
Jahn
, and
T.-Y.
Yoon
, “
Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover
,”
Science
347
(
6229
),
1485
1489
(
2015
).
87.
B.
Liang
,
V.
Kiessling
, and
L. K.
Tamm
, “
Prefusion structure of syntaxin-1A suggests pathay for folding into neuronal trans-SNARE complex fusion intermediate
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
48
),
19384
19389
(
2013
).
88.
C.
Kim
,
M. J.
Shon
,
S. H.
Kim
,
G. S.
Eun
,
J.-K.
Ryu
,
C.
Hyeon
,
R.
Jahn
, and
T.-Y.
Yoon
, “
Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes
,”
Nat. Commun.
12
(
1
),
3206
(
2021
).
89.
J.
Peurifoy
,
Y.
Shen
,
L.
Jing
,
Y.
Yang
,
F.
Cano-Renteria
,
B. G.
DeLacy
,
J. D.
Joannopoulos
,
M.
Tegmark
, and
M.
Soljačić
, “
Nanophotonic particle simulation and inverse design using artificial neural networks
,”
Sci. Adv.
4
(
6
),
eaar4206
(
2018
).
90.
I.
Malkiel
,
M.
Mrejen
et al, “
Plasmonic nanostructure design and characterization via Deep Learning
,”
Light Sci. Appl.
7
(
1
),
60
(
2018
).
91.
W.
Ma
,
F.
Cheng
, and
Y.
Liu
, “
Deep-learning-enabled on-demand design of chiral metamaterials
,”
ACS Nano
12
(
6
),
6326
6334
(
2018
).
92.
W.
Ma
,
F.
Cheng
,
Y.
Xu
,
Q.
Wen
, and
Y.
Liu
, “
Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy
,”
Adv. Mater.
31
(
35
),
1901111
(
2019
).
93.
Z.
Liu
,
D.
Zhu
,
K. T.
Lee
,
A. S.
Kim
,
L.
Raju
, and
W.
Cai
, “
Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques
,”
Adv. Mater.
32
(
6
),
1904790
(
2020
).
94.
W.
Ma
,
Y.
Xu
,
B.
Xiong
,
L.
Deng
,
R. W.
Peng
,
M.
Wang
, and
Y.
Liu
, “
Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning
,”
Adv. Mater.
34
(
16
),
2110022
(
2022
).
95.
W.
Ma
,
Z.
Liu
,
Z. A.
Kudyshev
,
A.
Boltasseva
,
W.
Cai
, and
Y.
Liu
, “
Deep learning for the design of photonic structures
,”
Nat. Photonics
15
(
2
),
77
90
(
2021
).
96.
J. H.
Han
,
Y. C.
Lim
,
R. M.
Kim
,
J.
Lv
,
N. H.
Cho
,
H.
Kim
,
S. D.
Namgung
,
S. W.
Im
, and
K. T.
Nam
, “
Neural-network-enabled design of a chiral plasmonic nanodimer for target-specific chirality sensing
,”
ACS Nano
17
(
3
),
2306
2317
(
2023
).
97.
Y.
Li
,
Y.
Xu
,
M.
Jiang
,
B.
Li
,
T.
Han
,
C.
Chi
,
F.
Lin
,
B.
Shen
,
X.
Zhu
,
L.
Lai
, and
Z.
Fang
, “
Self-learning perfect optical chirality via a deep neural network
,”
Phys. Rev. Lett.
123
(
21
),
213902
(
2019
).
98.
J.
Lv
,
D.
Ding
,
X.
Yang
,
K.
Hou
,
X.
Miao
,
D.
Wang
,
B.
Kou
,
L.
Huang
, and
Z.
Tang
, “
Biomimetic chiral photonic crystals
,”
Angew. Chem., Int. Ed.
58
(
23
),
7783
7787
(
2019
).
You do not currently have access to this content.