The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.

1.
B.
Weber
,
Y.
Nagata
,
S.
Ketzetzi
,
F.
Tang
,
W. J.
Smit
,
H. J.
Bakker
,
E. H. G.
Backus
,
M.
Bonn
, and
D.
Bonn
, “
Molecular insight into the slipperiness of ice
,”
J. Phys. Chem. Lett.
9
,
2838
2842
(
2018
).
2.
L.
Canale
,
J.
Comtet
,
A.
Niguès
,
C.
Cohen
,
C.
Clanet
,
A.
Siria
, and
L.
Bocquet
, “
Nanorheology of interfacial water during ice gliding
,”
Phys. Rev. X
9
,
041025
(
2019
).
3.
R. W.
Liefferink
,
F.-C.
Hsia
,
B.
Weber
, and
D.
Bonn
, “
Friction on ice: How temperature, pressure, and speed control the slipperiness of ice
,”
Phys. Rev. X
11
,
011025
(
2021
).
4.
J. H.
Lever
,
A. P.
Lines
,
S.
Taylor
,
G. R.
Hoch
,
E.
Asenath-Smith
, and
D. S.
Sodhi
, “
Revisiting mechanics of ice-skate friction: From experiments at a skating rink to a unified hypothesis
,”
J. Glaciol.
68
,
337
356
(
2022
).
5.
F.
Du
,
P.
Ke
, and
P.
Hong
, “
How ploughing and frictional melting regulate ice-skating friction
,”
Friction
11
,
2036
2058
(
2023
).
6.
B. N. J.
Persson
and
E. C.
Tyrode
, “
Ice breakloose friction
,”
J. Chem. Phys.
158
,
234701
(
2023
).
7.
N.
Miyashita
,
A. E.
Yakini
,
W.
Pyckhout-Hintzen
, and
B. N. J.
Persson
, “
Sliding friction on ice
,”
J. Chem. Phys.
158
,
174702
(
2023
).
8.
F. P.
Bowden
, “
Friction on snow and ice
,”
Proc. R. Soc. A
217
,
462
478
(
1953
).
9.
P.
Oksanen
and
J.
Keinonen
, “
The mechanism of friction of ice
,”
Wear
78
,
315
324
(
1982
).
10.
S.
Colbeck
, “
The kinetic friction of snow
,”
J. Glaciol.
34
,
78
86
(
1988
).
11.
E.
Lozowski
,
K.
Szilder
, and
S. A.
Maw
, “
A model of ice friction for a speed skate blade
,”
Sports Eng.
16
,
239
253
(
2013
).
12.
J. H.
Lever
and
A. P.
Lines
, “
Ice-rich slurries can account for the remarkably low friction of ice skates
,”
J. Glaciol.
69
,
217
236
(
2023
).
13.
F.
Du
, “
Analytical theory of ice-skating friction with flat contact
,”
Tribol. Lett.
71
,
5
(
2023
).
14.
K.
Tusima
, “
Adhesion theory for low friction on ice
,” in
New Tribological Ways
, edited by
T.
Ghrib
(
IntechOpen
,
Rijeka
,
2011
), Chap. 15.
15.
D.
Beaglehole
and
P.
Wilson
, “
Extrinsic premelting at the ice–glass interface
,”
J. Phys. Chem.
98
,
8096
8100
(
1994
).
16.
H.
Strausky
,
J. R.
Krenn
,
A.
Leitner
, and
F.
Aussenegg
, “
Sliding plastics on ice: Fluorescence spectroscopic studies on interfacial water layers in the μm thickness regime
,”
Appl. Phys. B
66
,
599
(
1998
).
17.
J. F. D.
Liljeblad
,
I.
Furó
, and
E. C.
Tyrode
, “
The premolten layer of ice next to a hydrophilic solid surface: Correlating adhesion with molecular properties
,”
Phys. Chem. Chem. Phys.
19
,
305
317
(
2017
).
18.
I.
de Almeida Ribeiro
and
M.
de Koning
, “
Grain-boundary sliding in ice Ih: Tribology and rheology at the nanoscale
,”
J. Phys. Chem. C
125
,
627
634
(
2021
).
19.
L.
Baran
,
P.
Llombart
,
W.
Rzysko
, and
L. G.
MacDowell
, “
Ice friction at the nanoscale
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2209545119
(
2022
).
20.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
21.
P. B.
Louden
and
J. D.
Gezelter
, “
Friction at ice-Ih/water interfaces is governed by solid/liquid hydrogen-bonding
,”
J. Phys. Chem. C
121
,
26764
26776
(
2017
).
22.
M. O.
Robbins
and
M. H.
Müser
, “
Computer simulations of friction, lubrication and wear
,” in
Modern Tribology Handbook
(
CRC Press
,
Boca Raton
,
2000
).
23.
C. J.
Pipe
,
T. S.
Majmudar
, and
G. H.
McKinley
, “
High shear rate viscometry
,”
Rheol. Acta
47
,
621
642
(
2008
).
24.
I.
de Almeida Ribeiro
and
M.
de Koning
, “
Non-Newtonian flow effects in supercooled water
,”
Phys. Rev. Res.
2
,
022004
(
2020
).
25.
H.
Spikes
and
Z.
Jie
, “
History, origins and prediction of elastohydrodynamic friction
,”
Tribol. Lett.
56
,
1
25
(
2014
).
26.
Y.
Zhao
,
Y.
Wu
,
L.
Bao
,
F.
Zhou
, and
W.
Liu
, “
A new mechanism of the interfacial water film dominating low ice friction
,”
J. Chem. Phys.
157
,
234703
(
2022
).
27.

The thermodynamic state of the reference viscosity used in the work of Ref. 26 was not reported in the paper, but communicated to us privately.

28.
L.
Baran
,
W.
Rzysko
, and
L. G.
MacDowell
, “
Self-diffusion and shear viscosity for the TIP4P/Ice water model
,”
J. Chem. Phys.
158
,
064503
(
2023
).
29.

The timestep of the simulations was not reported in Ref. 26. Real time estimates here are obtained using dt = 1 fs, as communicated to us privately by the authors.

You do not currently have access to this content.