We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122−·nCH3CN (n = 1–4). The electron binding energies of B12H122−·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122− via a threefold dihydrogen bond (DHB) B3–H3 ⁝⁝⁝ H3C–CN unit, in which three adjacent nucleophilic H atoms in B12H122− interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122− solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree–Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122− and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122−·CH3CN cluster. The binding motif in B12H122−·CH3CN is largely retained for the whole halogenated series B12X122−·CH3CN (X = F–I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.

1.
F.
Hofmeister
, “
Zur lehre von der wirkung der salze
,”
Arch. Exp. Pathol. Pharmakol.
24
,
247
260
(
1888
).
2.
W.
Kunz
,
J.
Henle
, and
B. W.
Ninham
, “
‘Zur lehre von der wirkung der salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers
,”
Curr. Opin. Colloid Interface Sci.
9
,
19
37
(
2004
).
3.
P.
Jungwirth
and
P. S.
Cremer
, “
Beyond Hofmeister
,”
Nat. Chem.
6
,
261
263
(
2014
).
4.
K. P.
Gregory
,
G. R.
Elliott
,
H.
Robertson
,
A.
Kumar
,
E. J.
Wanless
,
G. B.
Webber
,
V. S. J.
Craig
,
G. G.
Andersson
, and
A. J.
Page
, “
Understanding specific ion effects and the Hofmeister series
,”
Phys. Chem. Chem. Phys.
24
,
12682
12718
(
2022
).
5.
K. I.
Assaf
and
W. M.
Nau
, “
The chaotropic effect as an assembly motif in chemistry
,”
Angew. Chem., Int. Ed.
57
,
13968
13981
(
2018
).
6.
T.
Oncsik
,
G.
Trefalt
,
M.
Borkovec
, and
I.
Szilagyi
, “
Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series
,”
Langmuir
31
,
3799
3807
(
2015
).
7.
Y.
Zhang
and
P. S.
Cremer
, “
Interactions between macromolecules and ions: The Hofmeister series
,”
Curr. Opin. Chem. Biol.
10
,
658
663
(
2006
).
8.
W.
Kunz
,
P.
Lo Nostro
, and
B. W.
Ninham
, “
The present state of affairs with Hofmeister effects
,”
Curr. Opin. Colloid Interface Sci.
9
,
1
18
(
2004
).
9.
B.
Kang
,
H.
Tang
,
Z.
Zhao
, and
S.
Song
, “
Hofmeister series: Insights of ion specificity from amphiphilic assembly and interface property
,”
ACS Omega
5
,
6229
6239
(
2020
).
10.
H. I.
Okur
,
J.
Hladílková
,
K. B.
Rembert
,
Y.
Cho
,
J.
Heyda
,
J.
Dzubiella
,
P. S.
Cremer
, and
P.
Jungwirth
, “
Beyond the Hofmeister series: Ion-specific effects on proteins and their biological functions
,”
J. Phys. Chem. B
121
,
1997
2014
(
2017
).
11.
K. I.
Assaf
and
W. M.
Nau
, “
Large anion binding in water
,”
Org. Biomol. Chem.
21
,
6636
6651
(
2023
).
12.
X.-B.
Wang
, “
Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy
,”
J. Phys. Chem. A
121
,
1389
1401
(
2017
).
13.
K. D.
Collins
, “
Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process
,”
Methods
34
,
300
311
(
2004
).
14.
M. D.
Baer
and
C. J.
Mundy
, “
An ab initio approach to understanding the specific ion effect
,”
Faraday Discuss.
160
,
89
101
(
2013
).
15.
M. A.
Metrick
,
N.
do Carmo Ferreira
,
E.
Saijo
,
A. G.
Hughson
,
A.
Kraus
,
C.
Orrú
,
M. W.
Miller
,
G.
Zanusso
,
B.
Ghetti
,
M.
Vendruscolo
, and
B.
Caughey
, “
Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
23029
23039
(
2019
).
16.
S.
Lee
and
M.
Elimelech
, “
Salt cleaning of organic-fouled reverse osmosis membranes
,”
Water Res.
41
,
1134
1142
(
2007
).
17.
K.
Xu
, “
Electrolytes and interphases in Li-ion batteries and beyond
,”
Chem. Rev.
114
,
11503
11618
(
2014
).
18.
S.
Wu
,
C.
Zhu
,
Z.
He
,
H.
Xue
,
Q.
Fan
,
Y.
Song
,
J. S.
Francisco
,
X. C.
Zeng
, and
J.
Wang
, “
Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials
,”
Nat. Commun.
8
,
15154
(
2017
).
19.
V. S. J.
Craig
,
B. W.
Ninham
, and
R. M.
Pashley
, “
Effect of electrolytes on bubble coalescence
,”
Nature
364
,
317
319
(
1993
).
20.
R.
Tian
,
X.
Liu
,
X.
Gao
,
R.
Li
, and
H.
Li
, “
Observation of specific ion effects in humus aggregation process
,”
Pedosphere
31
,
736
745
(
2021
).
21.
J. C.
Warren
and
S. G.
Cheatum
, “
Effect of neutral salts on enzyme activity and structure
,”
Biochemistry
5
,
1702
1707
(
1966
).
22.
A.
Barba-Bon
,
G.
Salluce
,
I.
Lostalé-Seijo
,
K. I.
Assaf
,
A.
Hennig
,
J.
Montenegro
, and
W. M.
Nau
, “
Boron clusters as broadband membrane carriers
,”
Nature
603
,
637
642
(
2022
).
23.
J.
Warneke
,
C.
Jenne
,
J.
Bernarding
,
V. A.
Azov
, and
M.
Plaumann
, “
Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets
,”
Chem. Commun.
52
,
6300
6303
(
2016
).
24.
K. I.
Assaf
,
M. S.
Ural
,
F.
Pan
,
T.
Georgiev
,
S.
Simova
,
K.
Rissanen
,
D.
Gabel
, and
W. M.
Nau
, “
Water structure recovery in chaotropic anion recognition: High-affinity binding of dodecaborate clusters to γ-cyclodextrin
,”
Angew. Chem., Int. Ed.
54
,
6852
6856
(
2015
).
25.
P.
Cígler
,
M.
Kožíšek
,
P.
Řezáčová
,
J.
Brynda
,
Z.
Otwinowski
,
J.
Pokorná
,
J.
Plešek
,
B.
Grüner
,
L.
Dolečková-Marešová
,
M.
Máša
,
J.
Sedláček
,
J.
Bodem
,
H.-G.
Kräusslich
,
V.
Král
, and
J.
Konvalinka
, “
From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
15394
15399
(
2005
).
26.
E.
Aprà
,
J.
Warneke
,
S. S.
Xantheas
, and
X.-B.
Wang
, “
A benchmark photoelectron spectroscopic and theoretical study of the electronic stability of [B12H12]2−
,”
J. Chem. Phys.
150
,
164306
(
2019
).
27.
J.
Warneke
,
G.-L.
Hou
,
E.
Aprà
,
C.
Jenne
,
Z.
Yang
,
Z.
Qin
,
K.
Kowalski
,
X.-B.
Wang
, and
S. S.
Xantheas
, “
Electronic structure and stability of [B12X12]2− (X = F–At): A combined photoelectron spectroscopic and theoretical study
,”
J. Am. Chem. Soc.
139
,
14749
14756
(
2017
).
28.
H.
Zhao
,
J.
Zhou
, and
P.
Jena
, “
Stability of B12(CN)122−: Implications for lithium and magnesium ion batteries
,”
Angew. Chem., Int. Ed.
55
,
3704
3708
(
2016
).
29.
M.
Mayer
,
V.
van Lessen
,
M.
Rohdenburg
,
G.-L.
Hou
,
Z.
Yang
,
R. M.
Exner
,
E.
Aprà
,
V. A.
Azov
,
S.
Grabowsky
,
S. S.
Xantheas
,
K. R.
Asmis
,
X.-B.
Wang
,
C.
Jenne
, and
J.
Warneke
, “
Rational design of an argon-binding superelectrophilic anion
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8167
8172
(
2019
).
30.
Y.
Jiang
,
Q.
Yuan
,
W.
Cao
,
Z.
Hu
,
Y.
Yang
,
C.
Zhong
,
T.
Yang
,
H.
Sun
,
X.-B.
Wang
, and
Z.
Sun
, “
Unraveling hydridic-to-protonic dihydrogen bond predominance in monohydrated dodecaborate clusters
,”
Chem. Sci.
13
,
9855
9860
(
2022
).
31.
Y.
Jiang
,
Z.
Cai
,
Q.
Yuan
,
W.
Cao
,
Z.
Hu
,
H.
Sun
,
X.-B.
Wang
, and
Z.
Sun
, “
Highly structured water networks in microhydrated dodecaborate clusters
,”
J. Phys. Chem. Lett.
13
,
11787
11794
(
2022
).
32.
K.
Karki
,
D.
Gabel
, and
D.
Roccatano
, “
Structure and dynamics of dodecaborate clusters in water
,”
Inorg. Chem.
51
,
4894
4896
(
2012
).
33.
M.
Cannon
,
Y.
Liu
,
L.
Suess
, and
F. B.
Dunning
, “
Dipole-bound CH3CN ions: Temperature dependence of ion production rates and lifetimes
,”
J. Chem. Phys.
128
,
244307
(
2008
).
34.
L.
Dongfei
,
Z.
Shuo
,
Z.
Naicui
,
S.
Chenglin
,
S.
He
,
S.
Mingxing
,
J.
Hongsheng
, and
L.
Haibo
, “
Temperature-dependent study of Fermi resonance of CH3CN and CH3CN–Li+ complex in CH3CN-LiClO4 mixture by Raman spectroscopy
,”
Spectrochim. Acta, Part A
225
,
117507
(
2020
).
35.
D. M.
Seo
,
P. D.
Boyle
,
O.
Borodin
, and
W. A.
Henderson
, “
Li+ cation coordination by acetonitrile–insights from crystallography
,”
RSC Adv.
2
,
8014
8019
(
2012
).
36.
D.
Seo
,
O.
Borodin
,
S.-D.
Han
,
Q.
Ly
,
P. D.
Boyle
, and
W.
Henderson
, “
Electrolyte solvation and ionic association. I. Acetonitrile-lithium salt mixtures: Intermediate and highly associated salts
,”
J. Electrochem. Soc.
159
,
A553
A565
(
2012
).
37.
D. M.
Seo
,
O.
Borodin
,
S. D.
Han
,
P. D.
Boyle
, and
W. A.
Henderson
, “
Electrolyte solvation and ionic association. II. Acetonitrile-lithium salt mixtures: Highly dissociated salts
,”
J. Electrochem. Soc.
159
,
A1489
(
2012
).
38.
J. E.
Del Bene
, “
Hydrogen bonding: Methodology and applications to complexes of HF and HCl with HCN and CH3CN
,”
Int. J. Quantum Chem.
44
,
527
541
(
1992
).
39.
Q.
Yuan
,
W.
Cao
,
M.
Valiev
, and
X.-B.
Wang
, “
Photoelectron spectroscopy and theoretical study on monosolvated cyanate analogue clusters ECX·Sol (ECX = NCSe, AsCSe, and AsCS; Sol = H2O, CH3CN)
,”
J. Phys. Chem. A
125
,
3928
3935
(
2021
).
40.
W. R.
Fawcett
,
P.
Brooksby
,
D.
Verbovy
,
I.
Bakó
, and
G.
Pálinkás
, “
Studies of anion solvation in polar aprotic solvents
,”
J. Mol. Liq.
118
,
171
178
(
2005
).
41.
J. F.
Coetzee
and
W. R.
Sharpe
, “
Solute-solvent interactions. VII. Proton magnetic resonance and infrared study of ion solvation in dipolar aprotic solvents
,”
J. Solution Chem.
1
,
77
91
(
1972
).
42.
A. K.
Mollner
,
P. A.
Brooksby
,
J. S.
Loring
,
I.
Bako
,
G.
Palinkas
, and
W. R.
Fawcett
, “
Ion–solvent interactions in acetonitrile solutions of lithium iodide and tetrabutylammonium iodide
,”
J. Phys. Chem. A
108
,
3344
3349
(
2004
).
43.
A. M.
Erkabaev
,
T. V.
Yaroslavtseva
,
O. G.
Reznitskikh
, and
O. V.
Bushkova
, “
Solvation of anions in acetonitrile solutions: FTIR and quantum chemical study for Br, ClO4, AsF6, and CF3SO3
,”
Spectrochim. Acta, Part A
229
,
117873
(
2020
).
44.
K.
Venkata Ramana
and
S.
Singh
, “
Raman spectral studies on interactions of Br ions with CD3 group of acetonitrile, nitromethane and dimethyl sulfoxide
,”
J. Mol. Struct.
194
,
73
82
(
1989
).
45.
R.
Ayala
,
J. M.
Martínez
,
R. R.
Pappalardo
, and
E.
Sánchez Marcos
, “
Theoretical study of the microsolvation of the bromide anion in water, methanol, and acetonitrile: Ion–solvent vs solvent–solvent interactions
,”
J. Phys. Chem. A
104
,
2799
2807
(
2000
).
46.
Z.
Kerekes
,
D. A.
Tasi
, and
G.
Czakó
, “
SN2 reactions with an ambident nucleophile: A benchmark ab initio study of the CN + CH3Y [Y = F, Cl, Br, and I] systems
,”
J. Phys. Chem. A
126
,
889
900
(
2022
).
47.
Q. K.
Timerghazin
,
T.-N.
Nguyen
, and
G. H.
Peslherbe
, “
Asymmetric solvation revisited: The importance of hydrogen bonding in iodide-acetonitrile clusters
,”
J. Chem. Phys.
116
,
6867
6870
(
2002
).
48.
P.
Manikandan
,
J.
Zhang
, and
W. L.
Hase
, “
Chemical dynamics simulations of X + CH3Y → XCH3 + Y gas-phase SN2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms
,”
J. Phys. Chem. A
116
,
3061
3080
(
2012
).
49.
C. E. H.
Dessent
,
C. G.
Bailey
, and
M. A.
Johnson
, “
Dipole-bound excited states of the I·CH3CN and I·(CH3CN)2 ion–molecule complexes: Evidence for asymmetric solvation
,”
J. Chem. Phys.
103
,
2006
2015
(
1995
).
50.
X.-B.
Wang
,
X.
Yang
,
J. B.
Nicholas
, and
L.-S.
Wang
, “
Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters
,”
Science
294
,
1322
1325
(
2001
).
51.
X.-B.
Wang
and
L.-S.
Wang
, “
Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap
,”
Rev. Sci. Instrum.
79
,
073108
(
2008
).
52.
D.
Hanstorp
and
M.
Gustafsson
, “
Determination of the electron affinity of iodine
,”
J. Phys. B: At., Mol. Opt. Phys.
25
,
1773
(
1992
).
53.
X.-B.
Wang
and
L.-S.
Wang
, “
Photodetachment of free hexahalogenometallate doubly charged anions in the gas phase: [ML6]2−, (M=Re, Os, Ir, Pt; L=Cl and Br)
,”
J. Chem. Phys.
111
,
4497
4509
(
1999
).
54.
T.
Lu
,
Molclus program, version 1.12
, http://www.keinsci.com/research/molclus.html (accessed 1 March 2022).
55.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86)
,”
J. Chem. Theory Comput.
13
,
1989
2009
(
2017
).
56.
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
, “
Automated exploration of the low-energy chemical space with fast quantum chemical methods
,”
Phys. Chem. Chem. Phys.
22
,
7169
7192
(
2020
).
57.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
, “
r2SCAN-3c: A ‘Swiss army knife’ composite electronic-structure method
,”
J. Chem. Phys.
154
,
064103
(
2021
).
58.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
59.
N.
Mehta
,
M.
Casanova-Páez
, and
L.
Goerigk
, “
Semi-empirical or non-empirical double-hybrid density functionals: Which are more robust?
,”
Phys. Chem. Chem. Phys.
20
,
23175
23194
(
2018
).
60.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
61.
J.
Zheng
,
X.
Xu
, and
D. G.
Truhlar
, “
Minimally augmented Karlsruhe basis sets
,”
Theor. Chem. Acc.
128
,
295
305
(
2011
).
62.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision B.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
63.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
64.
T.
Lu
and
Q.
Chen
, “
Shermo: A general code for calculating molecular thermochemistry properties
,”
Comput. Theor. Chem.
1200
,
113249
(
2021
).
65.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
,
11683
11700
(
2007
).
66.
A. K.
Dutta
,
M.
Saitow
,
C.
Riplinger
,
F.
Neese
, and
R.
Izsák
, “
A near-linear scaling equation of motion coupled cluster method for ionized states
,”
J. Chem. Phys.
148
,
244101
(
2018
).
67.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
68.
T.
Lu
and
Q.
Chen
, “
Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
,”
J. Comput. Chem.
43
,
539
555
(
2022
).
69.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
10280
(
1993
).
70.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
71.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
72.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
73.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
, “
B97-3c: A revised low-cost variant of the B97-D density functional method
,”
J. Chem. Phys.
148
,
064104
(
2018
).
74.
S.
Emamian
,
T.
Lu
,
H.
Kruse
, and
H.
Emamian
, “
Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory
,”
J. Comput. Chem.
40
,
2868
2881
(
2019
).
75.
R.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
Oxford, UK
,
1990
).
76.
A.
Shahi
and
E.
Arunan
, “
Hydrogen bonding, halogen bonding and lithium bonding: An atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding
,”
Phys. Chem. Chem. Phys.
16
,
22935
22952
(
2014
).
77.
S. J.
Grabowski
, “
What is the covalency of hydrogen bonding?
,”
Chem. Rev.
111
,
2597
2625
(
2011
).
78.
T.
Lu
and
S.
Manzetti
, “
Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms
,”
Struct. Chem.
25
,
1521
1533
(
2014
).

Supplementary Material

You do not currently have access to this content.